Пример #1
0
plt.figure()
plt.plot(data[:, 0], data[:, 1], 'kx')
plt.title('data')

nb_models = 25

gating_hypparams = dict(K=nb_models, alphas=np.ones((nb_models, )))
gating_prior = Dirichlet(**gating_hypparams)

components_hypparams = dict(mu=np.zeros((2, )), kappa=0.01,
                            psi=np.eye(2), nu=3)
components_prior = NormalWishart(**components_hypparams)

gmm = BayesianMixtureOfGaussians(gating=CategoricalWithDirichlet(gating_prior),
                                 components=[GaussianWithNormalWishart(components_prior)
                                             for _ in range(nb_models)])

gmm.add_data(data, labels_from_prior=True)

allscores = []
allmodels = []
for superitr in range(5):
    # Gibbs sampling to wander around the posterior
    gmm.resample(maxiter=25)
    # mean field to lock onto a mode
    scores = gmm.meanfield_coordinate_descent(maxiter=100)

    allscores.append(scores)
    allmodels.append(copy.deepcopy(gmm))
Пример #2
0
def _job(kwargs):
    args = kwargs.pop('arguments')
    seed = kwargs.pop('seed')

    input = kwargs.pop('train_input')
    target = kwargs.pop('train_target')

    input_dim = input.shape[-1]
    target_dim = target.shape[-1]

    # set random seed
    np.random.seed(seed)

    nb_params = input_dim
    if args.affine:
        nb_params += 1

    basis_prior = []
    models_prior = []

    # initialize Normal
    psi_nw = 1e0
    kappa = 1e-2

    # initialize Matrix-Normal
    psi_mnw = 1e0
    K = 1e-3

    for n in range(args.nb_models):
        basis_hypparams = dict(mu=np.zeros((input_dim, )),
                               psi=np.eye(input_dim) * psi_nw,
                               kappa=kappa,
                               nu=input_dim + 1)

        aux = NormalWishart(**basis_hypparams)
        basis_prior.append(aux)

        models_hypparams = dict(M=np.zeros((target_dim, nb_params)),
                                K=K * np.eye(nb_params),
                                nu=target_dim + 1,
                                psi=np.eye(target_dim) * psi_mnw)

        aux = MatrixNormalWishart(**models_hypparams)
        models_prior.append(aux)

    # define gating
    if args.prior == 'stick-breaking':
        gating_hypparams = dict(K=args.nb_models,
                                gammas=np.ones((args.nb_models, )),
                                deltas=np.ones(
                                    (args.nb_models, )) * args.alpha)
        gating_prior = TruncatedStickBreaking(**gating_hypparams)

        ilr = BayesianMixtureOfLinearGaussians(
            gating=CategoricalWithStickBreaking(gating_prior),
            basis=[
                GaussianWithNormalWishart(basis_prior[i])
                for i in range(args.nb_models)
            ],
            models=[
                LinearGaussianWithMatrixNormalWishart(models_prior[i],
                                                      affine=args.affine)
                for i in range(args.nb_models)
            ])

    else:
        gating_hypparams = dict(K=args.nb_models,
                                alphas=np.ones(
                                    (args.nb_models, )) * args.alpha)
        gating_prior = Dirichlet(**gating_hypparams)

        ilr = BayesianMixtureOfLinearGaussians(
            gating=CategoricalWithDirichlet(gating_prior),
            basis=[
                GaussianWithNormalWishart(basis_prior[i])
                for i in range(args.nb_models)
            ],
            models=[
                LinearGaussianWithMatrixNormalWishart(models_prior[i],
                                                      affine=args.affine)
                for i in range(args.nb_models)
            ])
    ilr.add_data(target, input, whiten=True)

    # Gibbs sampling
    ilr.resample(maxiter=args.gibbs_iters, progprint=args.verbose)

    for _ in range(args.super_iters):
        if args.stochastic:
            # Stochastic meanfield VI
            ilr.meanfield_stochastic_descent(maxiter=args.svi_iters,
                                             stepsize=args.svi_stepsize,
                                             batchsize=args.svi_batchsize)
        if args.deterministic:
            # Meanfield VI
            ilr.meanfield_coordinate_descent(tol=args.earlystop,
                                             maxiter=args.meanfield_iters,
                                             progprint=args.verbose)

        ilr.gating.prior = ilr.gating.posterior
        for i in range(ilr.likelihood.size):
            ilr.basis[i].prior = ilr.basis[i].posterior
            ilr.models[i].prior = ilr.models[i].posterior

    return ilr
Пример #3
0
import numpy as np
import numpy.random as npr

from mimo.distributions import GaussianWithCovariance
from mimo.distributions import GaussianWithPrecision
from mimo.distributions import NormalWishart
from mimo.distributions import GaussianWithNormalWishart

npr.seed(1337)

dim, nb_samples, nb_datasets = 3, 500, 5
dist = GaussianWithCovariance(mu=npr.randn(dim),
                              sigma=1. * np.diag(npr.rand(dim)))
data = [dist.rvs(size=nb_samples) for _ in range(nb_datasets)]
print("True mean" + "\n", dist.mu.T, "\n" + "True sigma" + "\n", dist.sigma)

model = GaussianWithPrecision(mu=np.zeros((dim, )))
model.max_likelihood(data)
print("ML mean" + "\n", model.mu.T, "\n" + "ML sigma" + "\n", model.sigma)

hypparams = dict(mu=np.zeros((dim, )), kappa=0.01, psi=np.eye(dim), nu=dim + 1)
prior = NormalWishart(**hypparams)

model = GaussianWithNormalWishart(prior=prior)
model.max_aposteriori(data)
print("MAP mean" + "\n", model.likelihood.mu.T, "\n" + "MAP sigma" + "\n",
      model.likelihood.sigma)
Пример #4
0
import numpy as np
import numpy.random as npr

from mimo.distributions import GaussianWithCovariance
from mimo.distributions import NormalWishart
from mimo.distributions import GaussianWithNormalWishart

npr.seed(1337)

dim, nb_samples, nb_datasets = 3, 500, 5
dist = GaussianWithCovariance(mu=npr.randn(dim),
                              sigma=1. * np.diag(npr.rand(dim)))
data = [dist.rvs(size=nb_samples) for _ in range(nb_datasets)]
print("True mean" + "\n", dist.mu.T, "\n" + "True sigma" + "\n", dist.sigma)

hypparams = dict(mu=np.zeros((dim, )), kappa=0.01, psi=np.eye(dim), nu=dim + 1)
prior = NormalWishart(**hypparams)

model = GaussianWithNormalWishart(prior=prior)
model.resample(data)
print("Gibbs mean" + "\n", model.likelihood.mu.T, "\n" + "Gibbs sigma" + "\n",
      model.likelihood.sigma)
Пример #5
0
                                K=K * np.eye(nb_params),
                                nu=target_dim + 1,
                                psi=np.eye(target_dim) * psi_mnw)

        aux = MatrixNormalWishart(**models_hypparams)
        models_prior.append(aux)

    gating_hypparams = dict(K=args.nb_models,
                            gammas=np.ones((args.nb_models, )),
                            deltas=np.ones((args.nb_models, )) * args.alpha)
    gating_prior = TruncatedStickBreaking(**gating_hypparams)

    ilr = BayesianMixtureOfLinearGaussians(
        gating=CategoricalWithStickBreaking(gating_prior),
        basis=[
            GaussianWithNormalWishart(basis_prior[i])
            for i in range(args.nb_models)
        ],
        models=[
            LinearGaussianWithMatrixNormalWishart(models_prior[i],
                                                  affine=args.affine)
            for i in range(args.nb_models)
        ])

    import copy
    from sklearn.utils import shuffle
    from sklearn.metrics import mean_squared_error, r2_score

    anim = []

    split_size = int(nb_train / args.nb_splits)
Пример #6
0
plt.figure()
plt.plot(data[:, 0], data[:, 1], 'kx')
plt.title('data')

nb_models = 25

gating_hypparams = dict(K=nb_models, alphas=np.ones((nb_models, )))
gating_prior = Dirichlet(**gating_hypparams)

components_hypparams = dict(mu=np.zeros((2, )),
                            kappa=0.01,
                            psi=np.eye(2),
                            nu=3)
components_prior = NormalWishart(**components_hypparams)

gmm = BayesianMixtureOfGaussians(
    gating=CategoricalWithDirichlet(gating_prior),
    components=[
        GaussianWithNormalWishart(components_prior) for _ in range(nb_models)
    ])

gmm.add_data(data, labels_from_prior=True)

gmm.resample(maxiter=2500)

plt.figure()
plt.title('posterior')
gmm.plot()
plt.show()
Пример #7
0
components = [
    GaussianWithCovariance(mu=np.array([1., 1.]), sigma=0.25 * np.eye(2)),
    GaussianWithCovariance(mu=np.array([-1., -1.]), sigma=0.5 * np.eye(2))
]

gmm = MixtureOfGaussians(gating=gating, components=components)

obs, z = gmm.rvs(500)
gmm.plot(obs)

gating_hypparams = dict(K=2, alphas=np.ones((2, )))
gating_prior = Dirichlet(**gating_hypparams)

components_hypparams = dict(mu=np.zeros((2, )),
                            kappa=0.01,
                            psi=np.eye(2),
                            nu=3)
components_prior = NormalWishart(**components_hypparams)

model = BayesianMixtureOfGaussians(
    gating=CategoricalWithDirichlet(gating_prior),
    components=[GaussianWithNormalWishart(components_prior) for _ in range(2)])

model.add_data(obs)

model.resample(maxiter=1000)

plt.figure()
model.plot(obs)
Пример #8
0
import numpy as np
import numpy.random as npr

from mimo.distributions import GaussianWithCovariance
from mimo.distributions import NormalWishart
from mimo.distributions import GaussianWithNormalWishart

npr.seed(1337)

dim, nb_samples, nb_datasets = 3, 500, 5
dist = GaussianWithCovariance(mu=npr.randn(dim),
                              sigma=1. * np.diag(npr.rand(dim)))
data = [dist.rvs(size=nb_samples) for _ in range(nb_datasets)]
print("True mean" + "\n", dist.mu.T, "\n" + "True sigma" + "\n", dist.sigma)

hypparams = dict(mu=np.zeros((dim, )), kappa=0.01, psi=np.eye(dim), nu=dim + 1)
prior = NormalWishart(**hypparams)

model = GaussianWithNormalWishart(prior=prior)
model.meanfield_update(data)
print("Meanfield mean" + "\n", model.likelihood.mu.T,
      "\n" + "Meanfield sigma" + "\n", model.likelihood.sigma)