Пример #1
0
    #parser.add_argument('--product',
    #dest='product',
    #default=False,
    #action="store_true",
    #help='Use product as additional feature')

    parser.add_argument('--save', help='Save training results in a file')
    parser.add_argument('--load', help='Load training results from a file')

    options = parser.parse_args()

    return options


if __name__ == "__main__":
    history = minc.format_history(sys.argv)

    options = parse_options()
    # load prior and input image
    if (options.prior is not None
            or options.load is not None) and options.image is not None:
        if options.debug: print("Loading images...")
        # convert to float as we go

        #images= [ minc.Image(i).data.astype(np.float32)  for i in options.image ]
        image = minc.Image(options.image).data.astype(np.float32)

        if options.debug: print("Done")

        clf = None
Пример #2
0
                    default=False,
                    help='Use image coordinates as additional features' )
    
    parser.add_argument('--random', type=int,
                    dest="random",
                    help='Provide random state if needed' )
                    
    parser.add_argument('--save',help='Save training results in a file')
    parser.add_argument('--load',help='Load training results from a file')
    
    options = parser.parse_args()
    
    return options

if __name__ == "__main__":
    history=minc.format_history(sys.argv)
    
    options = parse_options()
    
    
    #print(repr(options))
    
    # load prior and input image
    if (options.prior is not None or options.load is not None) and options.image is not None:
        if options.debug: print("Loading images...")
        
        images= [ minc.Image(i).data for i in options.image ]

        if options.coord:
            # add features dependant on coordinates
            c=np.mgrid[0:images[0].shape[0] , 0:images[0].shape[1] , 0:images[0].shape[2]]