def test_jsma_attack_2(): """ JSMA-Attack test """ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") net = Net() input_shape = (1, 5) batch_size, classes = input_shape np.random.seed(5) input_np = np.random.random(input_shape).astype(np.float32) label_np = np.random.randint(classes, size=batch_size) ori_label = np.argmax(net(Tensor(input_np)).asnumpy(), axis=1) for i in range(batch_size): if label_np[i] == ori_label[i]: if label_np[i] < classes - 1: label_np[i] += 1 else: label_np[i] -= 1 attack = JSMAAttack(net, classes, max_iteration=5, increase=False) adv_data = attack.generate(input_np, label_np) assert np.any(input_np != adv_data)
def test_jsma_attack(): """ JSMA-Attack test """ # upload trained network ckpt_path = '../../../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_path) load_param_into_net(net, load_dict) # get test data data_list = "../../../common/dataset/MNIST/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size=batch_size) # prediction accuracy before attack model = Model(net) batch_num = 3 # the number of batches of attacking samples test_images = [] test_labels = [] predict_labels = [] i = 0 for data in ds.create_tuple_iterator(output_numpy=True): i += 1 images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), axis=1) predict_labels.append(pred_labels) if i >= batch_num: break predict_labels = np.concatenate(predict_labels) true_labels = np.concatenate(test_labels) targeted_labels = np.random.randint(0, 10, size=len(true_labels)) for i, true_l in enumerate(true_labels): if targeted_labels[i] == true_l: targeted_labels[i] = (targeted_labels[i] + 1) % 10 accuracy = np.mean(np.equal(predict_labels, true_labels)) LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) # attacking classes = 10 attack = JSMAAttack(net, classes) start_time = time.clock() adv_data = attack.batch_generate(np.concatenate(test_images), targeted_labels, batch_size=32) stop_time = time.clock() pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() # rescale predict confidences into (0, 1). pred_logits_adv = softmax(pred_logits_adv, axis=1) pred_lables_adv = np.argmax(pred_logits_adv, axis=1) accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels)) LOGGER.info(TAG, "prediction accuracy after attacking is : %g", accuracy_adv) test_labels = np.eye(10)[np.concatenate(test_labels)] attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose( 0, 2, 3, 1), test_labels, adv_data.transpose(0, 2, 3, 1), pred_logits_adv, targeted=True, target_label=targeted_labels) LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', attack_evaluate.mis_classification_rate()) LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', attack_evaluate.avg_conf_adv_class()) LOGGER.info(TAG, 'The average confidence of true class is : %s', attack_evaluate.avg_conf_true_class()) LOGGER.info( TAG, 'The average distance (l0, l2, linf) between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_lp_distance()) LOGGER.info( TAG, 'The average structural similarity between original ' 'samples and adversarial samples are: %s', attack_evaluate.avg_ssim()) LOGGER.info(TAG, 'The average costing time is %s', (stop_time - start_time) / (batch_num * batch_size))