Пример #1
0
def test_jsma_attack_2():
    """
    JSMA-Attack test
    """
    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
    net = Net()
    input_shape = (1, 5)
    batch_size, classes = input_shape
    np.random.seed(5)
    input_np = np.random.random(input_shape).astype(np.float32)
    label_np = np.random.randint(classes, size=batch_size)
    ori_label = np.argmax(net(Tensor(input_np)).asnumpy(), axis=1)
    for i in range(batch_size):
        if label_np[i] == ori_label[i]:
            if label_np[i] < classes - 1:
                label_np[i] += 1
            else:
                label_np[i] -= 1
    attack = JSMAAttack(net, classes, max_iteration=5, increase=False)
    adv_data = attack.generate(input_np, label_np)
    assert np.any(input_np != adv_data)
Пример #2
0
def test_jsma_attack():
    """
    JSMA-Attack test
    """
    # upload trained network
    ckpt_path = '../../../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_path)
    load_param_into_net(net, load_dict)

    # get test data
    data_list = "../../../common/dataset/MNIST/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = Model(net)
    batch_num = 3  # the number of batches of attacking samples
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator(output_numpy=True):
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(),
                                axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)
    targeted_labels = np.random.randint(0, 10, size=len(true_labels))
    for i, true_l in enumerate(true_labels):
        if targeted_labels[i] == true_l:
            targeted_labels[i] = (targeted_labels[i] + 1) % 10
    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy)

    # attacking
    classes = 10
    attack = JSMAAttack(net, classes)
    start_time = time.clock()
    adv_data = attack.batch_generate(np.concatenate(test_images),
                                     targeted_labels,
                                     batch_size=32)
    stop_time = time.clock()
    pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy()
    # rescale predict confidences into (0, 1).
    pred_logits_adv = softmax(pred_logits_adv, axis=1)
    pred_lables_adv = np.argmax(pred_logits_adv, axis=1)
    accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %g",
                accuracy_adv)
    test_labels = np.eye(10)[np.concatenate(test_labels)]
    attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(
        0, 2, 3, 1),
                                     test_labels,
                                     adv_data.transpose(0, 2, 3, 1),
                                     pred_logits_adv,
                                     targeted=True,
                                     target_label=targeted_labels)
    LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s',
                attack_evaluate.mis_classification_rate())
    LOGGER.info(TAG, 'The average confidence of adversarial class is : %s',
                attack_evaluate.avg_conf_adv_class())
    LOGGER.info(TAG, 'The average confidence of true class is : %s',
                attack_evaluate.avg_conf_true_class())
    LOGGER.info(
        TAG, 'The average distance (l0, l2, linf) between original '
        'samples and adversarial samples are: %s',
        attack_evaluate.avg_lp_distance())
    LOGGER.info(
        TAG, 'The average structural similarity between original '
        'samples and adversarial samples are: %s', attack_evaluate.avg_ssim())
    LOGGER.info(TAG, 'The average costing time is %s',
                (stop_time - start_time) / (batch_num * batch_size))