def test_dp_model_with_pynative_mode(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") norm_bound = 1.0 initial_noise_multiplier = 0.01 network = Net() batch_size = 32 batches = 128 epochs = 1 micro_batches = 2 loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) factory_opt = DPOptimizerClassFactory(micro_batches=micro_batches) factory_opt.set_mechanisms( 'Gaussian', norm_bound=norm_bound, initial_noise_multiplier=initial_noise_multiplier) net_opt = factory_opt.create('Momentum')(network.trainable_params(), learning_rate=0.1, momentum=0.9) clip_mech = ClipMechanismsFactory().create('Gaussian', decay_policy='Linear', learning_rate=0.01, target_unclipped_quantile=0.9, fraction_stddev=0.01) model = DPModel(micro_batches=micro_batches, norm_bound=norm_bound, clip_mech=clip_mech, noise_mech=None, network=network, loss_fn=loss, optimizer=net_opt, metrics=None) ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label']) model.train(epochs, ms_ds, dataset_sink_mode=False)
def test_dp_model_with_graph_mode(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") norm_bound = 1.0 initial_noise_multiplier = 0.01 network = Net() epochs = 1 loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) noise_mech = NoiseMechanismsFactory().create( 'Gaussian', norm_bound=norm_bound, initial_noise_multiplier=initial_noise_multiplier) clip_mech = ClipMechanismsFactory().create('Gaussian', decay_policy='Linear', learning_rate=0.01, target_unclipped_quantile=0.9, fraction_stddev=0.01) net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9) model = DPModel(micro_batches=2, clip_mech=clip_mech, norm_bound=norm_bound, noise_mech=noise_mech, network=network, loss_fn=loss, optimizer=net_opt, metrics=None) ms_ds = ds.GeneratorDataset(dataset_generator, ['data', 'label']) model.train(epochs, ms_ds, dataset_sink_mode=False)
def test_dp_model_with_graph_mode_ada_gaussian(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") norm_bound = 1.0 initial_noise_multiplier = 0.01 network = Net() batch_size = 32 batches = 128 epochs = 1 alpha = 0.8 loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) noise_mech = NoiseMechanismsFactory().create( 'AdaGaussian', norm_bound=norm_bound, initial_noise_multiplier=initial_noise_multiplier, noise_decay_rate=alpha, decay_policy='Exp') clip_mech = None net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9) model = DPModel(micro_batches=2, clip_mech=clip_mech, norm_bound=norm_bound, noise_mech=noise_mech, network=network, loss_fn=loss, optimizer=net_opt, metrics=None) ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), ['data', 'label']) model.train(epochs, ms_ds, dataset_sink_mode=False)
net_opt = nn.Momentum(params=network.trainable_params(), learning_rate=cfg.lr, momentum=cfg.momentum) # Create a monitor for DP training. The function of the monitor is to # compute and print the privacy budget(eps and delta) while training. rdp_monitor = PrivacyMonitorFactory.create( 'rdp', num_samples=60000, batch_size=cfg.batch_size, initial_noise_multiplier=cfg.initial_noise_multiplier, per_print_times=234) # Create the DP model for training. model = DPModel(micro_batches=cfg.micro_batches, norm_bound=cfg.norm_bound, noise_mech=noise_mech, network=network, loss_fn=net_loss, optimizer=net_opt, metrics={"Accuracy": Accuracy()}) LOGGER.info(TAG, "============== Starting Training ==============") model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor(), rdp_monitor], dataset_sink_mode=cfg.dataset_sink_mode) LOGGER.info(TAG, "============== Starting Testing ==============") ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-5_234.ckpt' param_dict = load_checkpoint(ckpt_file_name) load_param_into_net(network, param_dict) ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'),