def find_neighbors_from_file(input_vtk): """ Generate the list of unique, sorted indices of neighboring vertices for all vertices in the faces of a triangular mesh in a VTK file. Parameters ---------- input_vtk : string name of input VTK file containing surface mesh Returns ------- neighbor_lists : list of lists of integers each list contains indices to neighboring vertices for each vertex Examples -------- >>> import os >>> import numpy as np >>> from mindboggle.utils.mesh import find_neighbors_from_file >>> from mindboggle.utils.io_vtk import rewrite_scalars >>> from mindboggle.utils.plots import plot_surfaces >>> path = os.environ['MINDBOGGLE_DATA'] >>> vtk_file = os.path.join(path, 'arno', 'freesurfer', 'lh.pial.vtk') >>> # >>> neighbor_lists = find_neighbors_from_file(vtk_file) >>> # >>> # Write results to vtk file and view: >>> index = 0 >>> IDs = -1 * np.ones(npoints) >>> IDs[index] = 1 >>> IDs[neighbor_lists[index]] = 2 >>> rewrite_scalars(vtk_file, 'find_neighbors_from_file.vtk', IDs, 'neighbors', IDs) >>> plot_surfaces('find_neighbors_from_file.vtk') """ from mindboggle.utils.io_vtk import read_faces_points from mindboggle.utils.mesh import find_neighbors faces, points, npoints = read_faces_points(input_vtk) neighbor_lists = find_neighbors(faces, npoints) return neighbor_lists
def find_neighbors_from_file(input_vtk): """ Generate the list of unique, sorted indices of neighboring vertices for all vertices in the faces of a triangular mesh in a VTK file. Parameters ---------- input_vtk : string name of input VTK file containing surface mesh Returns ------- neighbor_lists : list of lists of integers each list contains indices to neighboring vertices for each vertex Examples -------- >>> import os >>> import numpy as np >>> from mindboggle.utils.mesh import find_neighbors_from_file >>> from mindboggle.utils.io_vtk import rewrite_scalars >>> from mindboggle.utils.plots import plot_vtk >>> path = os.environ['MINDBOGGLE_DATA'] >>> vtk_file = os.path.join(path, 'arno', 'freesurfer', 'lh.pial.vtk') >>> # >>> neighbor_lists = find_neighbors_from_file(vtk_file) >>> # >>> # Write results to vtk file and view: >>> index = 0 >>> IDs = -1 * np.ones(npoints) >>> IDs[index] = 1 >>> IDs[neighbor_lists[index]] = 2 >>> rewrite_scalars(vtk_file, 'find_neighbors_from_file.vtk', IDs, 'neighbors', IDs) >>> plot_vtk('find_neighbors_from_file.vtk') """ from mindboggle.utils.io_vtk import read_faces_points from mindboggle.utils.mesh import find_neighbors faces, points, npoints = read_faces_points(input_vtk) neighbor_lists = find_neighbors(faces, npoints) return neighbor_lists
def propagate_fundus_lines(points, faces, fundus_line_indices, thickness): """Propagate fundus lines to tile the surface. Parameters ---------- surf_file: file containing the surface geometry in vtk format fundus_lines_file: file containing scalars representing fundus lines thickness_file: file containing cortical thickness scalar data (for masking out the medial wall only) Returns ------- scalars indicating whether each vertex is part of the closed fundus lines or not """ from mindboggle.utils.mesh import find_neighbors import numpy as np num_points = len(points) neighbor_lists = find_neighbors(faces, num_points) # Find the boundary of the cc and call that a fundus line cc_inds = [x for x in xrange(num_points) if thickness[x] < 0.001] cc_boundary = [x for x in cc_inds if len([y for y in neighbor_lists[x] if y not in cc_inds])] fundus_line_indices += cc_boundary endpoints = _find_fundus_line_endpoints( fundus_line_indices, neighbor_lists) closed_fundus_lines = _close_fundus_lines(points, fundus_line_indices, neighbor_lists, endpoints) closed_fundus_line_indices = np.where( np.array(closed_fundus_lines) > 0)[0].tolist() new_endpoints = _find_fundus_line_endpoints(closed_fundus_line_indices, neighbor_lists) new_closed_fundus_lines = _close_fundus_lines( points, closed_fundus_line_indices, neighbor_lists, new_endpoints) return new_closed_fundus_lines, points, faces
# Example use of the minimum spanning tree algorithm if __name__ == "__main__" : import os import networkx as nx from mindboggle.utils.io_vtk import read_vtk, rewrite_scalars from mindboggle.utils.mesh import find_neighbors, remove_faces from mindboggle.utils.mesh import min_span_tree from mindboggle.utils.plots import plot_vtk data_path = os.environ['MINDBOGGLE_DATA'] sulci_file = os.path.join(data_path, 'arno', 'features', 'sulci.vtk') faces, lines, indices, points, npoints, sulci, name, input_vtk = read_vtk(sulci_file) sulcus_ID = 1 sulcus_indices = [i for i,x in enumerate(sulci) if x == sulcus_ID] sulcus_faces = remove_faces(faces, sulcus_indices) sulcus_neighbor_lists = find_neighbors(sulcus_faces, len(points)) G=nx.Graph() G.add_nodes_from(sulcus_indices) for i, sulcus_neighbor_list in enumerate(sulcus_neighbor_lists): G.add_edges_from([[i,x] for x in sulcus_neighbor_list]) adjacency_matrix = nx.adjacency_matrix(G, nodelist=None, weight='weight') indices_to_connect = [0, len(sulcus_indices)-1] adjacency_matrix2, W, Path, Degree, TreeNbr = min_span_tree(adjacency_matrix, indices_to_connect) # Write results to vtk file and view: MST = np.zeros(len(points)) MST[W] = 1 rewrite_scalars(sulci_file, 'test_min_span_tree.vtk', MST, 'MST', MST) Terminal, Branching = [], []
def extract_sulci(labels_file, folds_or_file, hemi, sulcus_label_pair_lists, unique_sulcus_label_pairs, min_boundary=1, sulcus_names=[]): """ Identify sulci from folds in a brain surface according to a labeling protocol that includes a list of label pairs defining each sulcus. A fold is a group of connected, deep vertices. Steps for each fold :: 1. Remove fold if it has fewer than two labels. 2. Remove fold if its labels do not contain a sulcus label pair. 3. Find vertices with labels that are in only one of the fold's label boundary pairs. Assign the vertices the sulcus with the label pair if they are connected to the label boundary for that pair. 4. If there are remaining vertices, segment into sets of vertices connected to label boundaries, and assign a unique ID to each segment. Parameters ---------- labels_file : string file name for surface mesh VTK containing labels for all vertices folds_or_file : list or string fold number for each vertex or name of VTK file containing folds scalars hemi : string hemisphere ('lh' or 'rh') sulcus_label_pair_lists : list of two lists of multiple lists of integer pairs list containing left and right lists, each with multiple lists of integer pairs corresponding to label boundaries / sulcus / fundus unique_sulcus_label_pairs : list of unique pairs of integers unique label pairs min_boundary : integer minimum number of vertices for a sulcus label boundary segment sulcus_names : list of strings names of sulci Returns ------- sulci : list of integers sulcus numbers for all vertices (-1 for non-sulcus vertices) n_sulci : integers number of sulci sulci_file : string name of output VTK file with sulcus numbers (-1 for non-sulcus vertices) Examples -------- >>> import os >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars >>> from mindboggle.labels.protocol import dkt_protocol >>> from mindboggle.features.sulci import extract_sulci >>> from mindboggle.utils.plots import plot_vtk >>> path = os.environ['MINDBOGGLE_DATA'] >>> # Load labels, folds, neighbor lists, and sulcus names and label pairs >>> labels_file = os.path.join(path, 'arno', 'labels', 'relabeled_lh.DKTatlas40.gcs.vtk') >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk') >>> folds_or_file, name = read_scalars(folds_file) >>> protocol = 'DKT31' >>> hemi = 'lh' >>> sulcus_names, sulcus_label_pair_lists, unique_sulcus_label_pairs, ... label_names, label_numbers, cortex_names, cortex_numbers, ... noncortex_names, noncortex_numbers = dkt_protocol(protocol) >>> min_boundary = 10 >>> # >>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file, >>> hemi, sulcus_label_pair_lists, unique_sulcus_label_pairs, >>> min_boundary, sulcus_names) >>> # View: >>> plot_vtk('sulci.vtk') """ import os from time import time import numpy as np from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars from mindboggle.utils.mesh import find_neighbors from mindboggle.labels.labels import extract_borders from mindboggle.utils.segment import propagate, segment # Load fold numbers if folds_or_file is a string if isinstance(folds_or_file, str): folds, name = read_scalars(folds_or_file) elif isinstance(folds_or_file, list): folds = folds_or_file if hemi == 'lh': sulcus_label_pair_lists = sulcus_label_pair_lists[0] elif hemi == 'rh': sulcus_label_pair_lists = sulcus_label_pair_lists[1] else: print("Warning: hemisphere not properly specified ('lh' or 'rh').") # Load points, faces, and neighbors faces, foo1, foo2, points, npoints, labels, foo3, foo4 = read_vtk(labels_file) neighbor_lists = find_neighbors(faces, npoints) # Array of sulcus IDs for fold vertices, initialized as -1. # Since we do not touch gyral vertices and vertices whose labels # are not in the label list, or vertices having only one label, # their sulcus IDs will remain -1. sulci = -1 * np.ones(npoints) #------------------------------------------------------------------------- # Loop through folds #------------------------------------------------------------------------- fold_numbers = [int(x) for x in np.unique(folds) if x > -1] n_folds = len(fold_numbers) print("Extract sulci from {0} folds...".format(n_folds)) t0 = time() for n_fold in fold_numbers: fold = [i for i,x in enumerate(folds) if x == n_fold] len_fold = len(fold) # List the labels in this fold (greater than zero) fold_labels = [labels[x] for x in fold] unique_fold_labels = [int(x) for x in np.unique(fold_labels) if x > 0] #--------------------------------------------------------------------- # NO MATCH -- fold has fewer than two labels #--------------------------------------------------------------------- if len(unique_fold_labels) < 2: # Ignore: sulci already initialized with -1 values if not unique_fold_labels: print(" Fold {0} ({1} vertices): NO MATCH -- fold has no labels". format(n_fold, len_fold)) else: print(" Fold {0} ({1} vertices): " "NO MATCH -- fold has only one label ({2})". format(n_fold, len_fold, unique_fold_labels[0])) # Ignore: sulci already initialized with -1 values else: # Find all label boundary pairs within the fold indices_fold_pairs, fold_pairs, unique_fold_pairs = extract_borders( fold, labels, neighbor_lists, ignore_values=[], return_label_pairs=True) # Find fold label pairs in the protocol (pairs are already sorted) fold_pairs_in_protocol = [x for x in unique_fold_pairs if x in unique_sulcus_label_pairs] if unique_fold_labels: print(" Fold {0} labels: {1} ({2} vertices)".format(n_fold, ', '.join([str(x) for x in unique_fold_labels]), len_fold)) #----------------------------------------------------------------- # NO MATCH -- fold has no sulcus label pair #----------------------------------------------------------------- if not fold_pairs_in_protocol: print(" Fold {0}: NO MATCH -- fold has no sulcus label pair". format(n_fold, len_fold)) #----------------------------------------------------------------- # Possible matches #----------------------------------------------------------------- else: print(" Fold {0} label pairs in protocol: {1}".format(n_fold, ', '.join([str(x) for x in fold_pairs_in_protocol]))) # Labels in the protocol (includes repeats across label pairs) labels_in_pairs = [x for lst in fold_pairs_in_protocol for x in lst] # Labels that appear in one or more than one sulcus label boundary unique_labels = [] nonunique_labels = [] for label in np.unique(labels_in_pairs): if len([x for x in labels_in_pairs if x == label]) == 1: unique_labels.append(label) else: nonunique_labels.append(label) #------------------------------------------------------------- # Vertices whose labels are in only one sulcus label pair #------------------------------------------------------------- # Find vertices with a label that is in only one of the fold's # label pairs (the other label in the pair can exist # in other pairs). Assign the vertices the sulcus with the label # pair if they are connected to the label boundary for that pair. #------------------------------------------------------------- if len(unique_labels): for pair in fold_pairs_in_protocol: # If one or both labels in label pair is/are unique unique_labels_in_pair = [x for x in pair if x in unique_labels] n_unique = len(unique_labels_in_pair) if n_unique: ID = [i for i,x in enumerate(sulcus_label_pair_lists) if pair in x][0] # Construct seeds from label boundary vertices # (fold_pairs and pair already sorted) indices_pair = [x for i,x in enumerate(indices_fold_pairs) if fold_pairs[i] == pair] # Identify vertices with unique label(s) in pair indices_unique_labels = [fold[i] for i,x in enumerate(fold_labels) if x in unique_sulcus_label_pairs] # Propagate from seeds to labels in label pair sulci2 = segment(indices_unique_labels, neighbor_lists, min_region_size=1, seed_lists=[indices_pair], keep_seeding=False, spread_within_labels=True, labels=labels) sulci[sulci2 > -1] = ID # Print statement if n_unique == 1: ps1 = '1 label' else: ps1 = 'Both labels' if len(sulcus_names): ps2 = sulcus_names[ID] else: ps2 = '' print(" {0} unique to one fold pair: {1} {2}". format(ps1, ps2, unique_labels_in_pair)) #------------------------------------------------------------- # Vertex labels shared by multiple label pairs #------------------------------------------------------------- # Propagate labels from label borders to vertices with labels # that are shared by multiple label pairs in the fold. #------------------------------------------------------------- if len(nonunique_labels): # For each label shared by different label pairs for label in nonunique_labels: # Print statement print(" Propagate sulcus label borders with label {0}". format(int(label))) # Construct seeds from label boundary vertices seeds = -1 * np.ones(len(points)) for ID, label_pair_list in enumerate(sulcus_label_pair_lists): label_pairs = [x for x in label_pair_list if label in x] for label_pair in label_pairs: indices_pair = [x for i,x in enumerate(indices_fold_pairs) if np.sort(fold_pairs[i]).tolist() == label_pair] if indices_pair: # Do not include short boundary segments if min_boundary > 1: indices_pair2 = [] seeds2 = segment(indices_pair, neighbor_lists) for seed2 in range(int(max(seeds2))+1): iseed2 = [i for i,x in enumerate(seeds2) if x == seed2] if len(iseed2) >= min_boundary: indices_pair2.extend(iseed2) else: if len(iseed2) == 1: print(" Remove assignment " "of ID {0} from 1 vertex". format(seed2)) else: print(" Remove assignment " "of ID {0} from {1} vertices". format(seed2, len(iseed2))) indices_pair = indices_pair2 # Assign sulcus IDs to seeds seeds[indices_pair] = ID # Identify vertices with the label label_array = -1 * np.ones(len(points)) indices_label = [fold[i] for i,x in enumerate(fold_labels) if x == label] if len(indices_label): label_array[indices_label] = 1 # Propagate from seeds to vertices with label #indices_seeds = [] #for seed in range(int(max(seeds))+1): # indices_seeds.append([i for i,x in enumerate(seeds) # if x == seed]) #sulci2 = segment(indices_label, neighbor_lists, # 50, indices_seeds, False, True, labels) sulci2 = propagate(points, faces, label_array, seeds, sulci, max_iters=10000, tol=0.001, sigma=5) sulci[sulci2 > -1] = sulci2[sulci2 > -1] #------------------------------------------------------------------------- # Print out assigned sulci #------------------------------------------------------------------------- sulcus_numbers = [int(x) for x in np.unique(sulci) if x > -1] n_sulci = len(sulcus_numbers) print("Extracted {0} sulci from {1} folds ({2:.1f}s):". format(n_sulci, n_folds, time()-t0)) if len(sulcus_names): for sulcus_number in sulcus_numbers: print(" {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number])) else: print(" " + ", ".join([str(x) for x in sulcus_numbers])) #------------------------------------------------------------------------- # Print out unresolved sulci #------------------------------------------------------------------------- unresolved = [i for i in range(len(sulcus_label_pair_lists)) if i not in sulcus_numbers] if len(unresolved) == 1: print("The following sulcus is unaccounted for:") else: print("The following {0} sulci are unaccounted for:".format(len(unresolved))) if len(sulcus_names): for sulcus_number in unresolved: print(" {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number])) else: print(" " + ", ".join([str(x) for x in unresolved])) #------------------------------------------------------------------------- # Return sulci, number of sulci, and file name #------------------------------------------------------------------------- sulci_file = os.path.join(os.getcwd(), 'sulci.vtk') rewrite_scalars(labels_file, sulci_file, sulci, 'sulci', sulci) sulci.tolist() return sulci, n_sulci, sulci_file
def select_largest(points, faces, exclude_labels=[-1], areas=None, reindex=True): """ Select the largest segment (connected set of indices) in a mesh. In case a surface patch is fragmented, we select the largest fragment, remove extraneous triangular faces, and reindex indices. Parameters ---------- points : list of lists of 3 floats x,y,z coordinates for each vertex of the structure faces : list of lists of 3 integers 3 indices to vertices that form a triangle on the mesh exclude_labels : list of integers background values to exclude areas : numpy array or list of floats (or None) surface area scalar values for all vertices reindex : Boolean reindex indices in faces? Returns ------- points : list of lists of 3 floats x,y,z coordinates for each vertex of the structure faces : list of lists of 3 integers 3 indices to vertices that form a triangle on the mesh Examples -------- >>> # Spectrum for one label (artificial composite), two fragments: >>> import os >>> import numpy as np >>> from mindboggle.utils.io_vtk import read_scalars, read_vtk, write_vtk >>> from mindboggle.utils.mesh import remove_faces >>> from mindboggle.utils.segment import select_largest >>> path = os.environ['MINDBOGGLE_DATA'] >>> label_file = os.path.join(path, 'arno', 'labels', 'lh.labels.DKT31.manual.vtk') >>> area_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.area.vtk') >>> exclude_labels = [-1] >>> faces, lines, indices, points, u1, labels, u2,u3 = read_vtk(label_file, >>> return_first=True, return_array=True) >>> I19 = [i for i,x in enumerate(labels) if x==19] # pars orbitalis >>> I22 = [i for i,x in enumerate(labels) if x==22] # postcentral >>> I19.extend(I22) >>> faces = remove_faces(faces, I19) >>> areas, u1 = read_scalars(area_file, True, True) >>> reindex = True >>> # >>> points, faces = select_largest(points, faces, exclude_labels, areas, >>> reindex) >>> # View: >>> from mindboggle.utils.plots import plot_vtk >>> scalars = np.zeros(np.shape(labels)) >>> scalars[I19] = 1 >>> vtk_file = 'test_two_labels.vtk' >>> write_vtk(vtk_file, points, indices, lines, faces, >>> scalars, scalar_names='scalars') >>> plot_vtk(vtk_file) """ import numpy as np from mindboggle.utils.mesh import find_neighbors, remove_faces, \ reindex_faces_points from mindboggle.utils.segment import segment # Areas: use_area = False if isinstance(areas, np.ndarray) and np.shape(areas): use_area = True elif isinstance(areas, list) and len(areas): areas = np.array(areas) use_area = True # Check to see if there are enough points: min_npoints = 4 npoints = len(points) if npoints < min_npoints or len(faces) < min_npoints: print("The input size {0} ({1} faces) should be much larger " "than {2}". format(npoints, len(faces), min_npoints)) return None else: #--------------------------------------------------------------------- # Segment the indices into connected sets of indices: #--------------------------------------------------------------------- # Construct neighbor lists: neighbor_lists = find_neighbors(faces, npoints) # Determine the indices: indices = [x for sublst in faces for x in sublst] # Segment: segments = segment(indices, neighbor_lists, min_region_size=1, seed_lists=[], keep_seeding=False, spread_within_labels=False, labels=[], label_lists=[], values=[], max_steps='', verbose=False) #--------------------------------------------------------------------- # Select the largest segment (connected set of indices): #--------------------------------------------------------------------- unique_segments = [x for x in np.unique(segments) if x not in exclude_labels] if len(unique_segments) > 1: select_indices = [] max_segment_area = 0 for segment_number in unique_segments: segment_indices = [i for i,x in enumerate(segments) if x == segment_number] if use_area: segment_area = np.sum(areas[segment_indices]) else: segment_area = len(segment_indices) if segment_area > max_segment_area: select_indices = segment_indices max_segment_area = len(select_indices) print('Maximum size of {0} segments: {1} vertices'. format(len(unique_segments), len(select_indices))) #----------------------------------------------------------------- # Extract points and renumber faces for the selected indices: #----------------------------------------------------------------- faces = remove_faces(faces, select_indices) else: select_indices = indices # Alert if the number of indices is small: if len(select_indices) < min_npoints: print("The input size {0} is too small.".format(len(select_indices))) return None elif faces: #----------------------------------------------------------------- # Reindex indices in faces: #----------------------------------------------------------------- if reindex: faces, points = reindex_faces_points(faces, points) return points, faces else: points = np.array(points) points = points[select_indices].tolist() return points, faces else: return None
def extract_sulci(labels_file, folds_or_file, hemi, min_boundary=1, sulcus_names=[]): """ Identify sulci from folds in a brain surface according to a labeling protocol that includes a list of label pairs defining each sulcus. A fold is a group of connected, deep vertices. Steps for each fold :: 1. Remove fold if it has fewer than two labels. 2. Remove fold if its labels do not contain a sulcus label pair. 3. Find vertices with labels that are in only one of the fold's label boundary pairs. Assign the vertices the sulcus with the label pair if they are connected to the label boundary for that pair. 4. If there are remaining vertices, segment into sets of vertices connected to label boundaries, and assign a unique ID to each set. Parameters ---------- labels_file : string file name for surface mesh VTK containing labels for all vertices folds_or_file : list or string fold number for each vertex / name of VTK file containing fold scalars hemi : string hemisphere abbreviation in {'lh', 'rh'} for sulcus labels min_boundary : integer minimum number of vertices for a sulcus label boundary segment sulcus_names : list of strings names of sulci Returns ------- sulci : list of integers sulcus numbers for all vertices (-1 for non-sulcus vertices) n_sulci : integers number of sulci sulci_file : string output VTK file with sulcus numbers (-1 for non-sulcus vertices) Examples -------- >>> import os >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars >>> from mindboggle.features.sulci import extract_sulci >>> from mindboggle.utils.plots import plot_surfaces >>> path = os.environ['MINDBOGGLE_DATA'] >>> # Load labels, folds, neighbor lists, and sulcus names and label pairs >>> labels_file = os.path.join(path, 'arno', 'labels', 'relabeled_lh.DKTatlas40.gcs.vtk') >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk') >>> folds_or_file, name = read_scalars(folds_file) >>> hemi = 'lh' >>> min_boundary = 10 >>> sulcus_names = [] >>> # >>> sulci, n_sulci, sulci_file = extract_sulci(labels_file, folds_or_file, hemi, min_boundary, sulcus_names) >>> # View: >>> plot_surfaces('sulci.vtk') """ import os from time import time import numpy as np from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars from mindboggle.utils.mesh import find_neighbors from mindboggle.utils.segment import extract_borders, propagate, segment from mindboggle.LABELS import DKTprotocol # Load fold numbers if folds_or_file is a string: if isinstance(folds_or_file, str): folds, name = read_scalars(folds_or_file) elif isinstance(folds_or_file, list): folds = folds_or_file dkt = DKTprotocol() if hemi == 'lh': pair_lists = dkt.left_sulcus_label_pair_lists elif hemi == 'rh': pair_lists = dkt.right_sulcus_label_pair_lists else: print("Warning: hemisphere not properly specified ('lh' or 'rh').") # Load points, faces, and neighbors: faces, o1, o2, points, npoints, labels, o3, o4 = read_vtk(labels_file) neighbor_lists = find_neighbors(faces, npoints) # Array of sulcus IDs for fold vertices, initialized as -1. # Since we do not touch gyral vertices and vertices whose labels # are not in the label list, or vertices having only one label, # their sulcus IDs will remain -1: sulci = -1 * np.ones(npoints) #------------------------------------------------------------------------- # Loop through folds #------------------------------------------------------------------------- fold_numbers = [int(x) for x in np.unique(folds) if x != -1] n_folds = len(fold_numbers) print("Extract sulci from {0} folds...".format(n_folds)) t0 = time() for n_fold in fold_numbers: fold = [i for i, x in enumerate(folds) if x == n_fold] len_fold = len(fold) # List the labels in this fold: fold_labels = [labels[x] for x in fold] unique_fold_labels = [ int(x) for x in np.unique(fold_labels) if x != -1 ] #--------------------------------------------------------------------- # NO MATCH -- fold has fewer than two labels #--------------------------------------------------------------------- if len(unique_fold_labels) < 2: # Ignore: sulci already initialized with -1 values: if not unique_fold_labels: print(" Fold {0} ({1} vertices): " "NO MATCH -- fold has no labels".format( n_fold, len_fold)) else: print(" Fold {0} ({1} vertices): " "NO MATCH -- fold has only one label ({2})".format( n_fold, len_fold, unique_fold_labels[0])) # Ignore: sulci already initialized with -1 values else: # Find all label boundary pairs within the fold: indices_fold_pairs, fold_pairs, unique_fold_pairs = \ extract_borders(fold, labels, neighbor_lists, ignore_values=[], return_label_pairs=True) # Find fold label pairs in the protocol (pairs are already sorted): fold_pairs_in_protocol = [ x for x in unique_fold_pairs if x in dkt.unique_sulcus_label_pairs ] if unique_fold_labels: print(" Fold {0} labels: {1} ({2} vertices)".format( n_fold, ', '.join([str(x) for x in unique_fold_labels]), len_fold)) #----------------------------------------------------------------- # NO MATCH -- fold has no sulcus label pair #----------------------------------------------------------------- if not fold_pairs_in_protocol: print(" Fold {0}: NO MATCH -- fold has no sulcus label pair". format(n_fold, len_fold)) #----------------------------------------------------------------- # Possible matches #----------------------------------------------------------------- else: print(" Fold {0} label pairs in protocol: {1}".format( n_fold, ', '.join([str(x) for x in fold_pairs_in_protocol]))) # Labels in the protocol (includes repeats across label pairs): labels_in_pairs = [ x for lst in fold_pairs_in_protocol for x in lst ] # Labels that appear in one or more sulcus label boundary: unique_labels = [] nonunique_labels = [] for label in np.unique(labels_in_pairs): if len([x for x in labels_in_pairs if x == label]) == 1: unique_labels.append(label) else: nonunique_labels.append(label) #------------------------------------------------------------- # Vertices whose labels are in only one sulcus label pair #------------------------------------------------------------- # Find vertices with a label that is in only one of the fold's # label pairs (the other label in the pair can exist in other # pairs). Assign the vertices the sulcus with the label pair # if they are connected to the label boundary for that pair. #------------------------------------------------------------- if unique_labels: for pair in fold_pairs_in_protocol: # If one or both labels in label pair is/are unique: unique_labels_in_pair = [ x for x in pair if x in unique_labels ] n_unique = len(unique_labels_in_pair) if n_unique: ID = None for i, pair_list in enumerate(pair_lists): if not isinstance(pair_list, list): pair_list = [pair_list] if pair in pair_list: ID = i break if ID: # Seeds from label boundary vertices # (fold_pairs and pair already sorted): indices_pair = [ x for i, x in enumerate(indices_fold_pairs) if fold_pairs[i] == pair ] # Vertices with unique label(s) in pair: indices_unique_labels = [ fold[i] for i, x in enumerate(fold_labels) if x in dkt.unique_sulcus_label_pairs ] # Propagate from seeds to labels in label pair: sulci2 = segment(indices_unique_labels, neighbor_lists, min_region_size=1, seed_lists=[indices_pair], keep_seeding=False, spread_within_labels=True, labels=labels) sulci[sulci2 != -1] = ID # Print statement: if n_unique == 1: ps1 = '1 label' else: ps1 = 'Both labels' if len(sulcus_names): ps2 = sulcus_names[ID] else: ps2 = '' print(" {0} unique to one fold pair: " "{1} {2}".format(ps1, ps2, unique_labels_in_pair)) #------------------------------------------------------------- # Vertex labels shared by multiple label pairs #------------------------------------------------------------- # Propagate labels from label borders to vertices with labels # that are shared by multiple label pairs in the fold. #------------------------------------------------------------- if len(nonunique_labels): # For each label shared by different label pairs: for label in nonunique_labels: # Print statement: print(" Propagate sulcus borders with label {0}". format(int(label))) # Construct seeds from label boundary vertices: seeds = -1 * np.ones(len(points)) for ID, pair_list in enumerate(pair_lists): if not isinstance(pair_list, list): pair_list = [pair_list] label_pairs = [x for x in pair_list if label in x] for label_pair in label_pairs: indices_pair = [ x for i, x in enumerate(indices_fold_pairs) if np.sort(fold_pairs[i]).tolist() == label_pair ] if indices_pair: # Do not include short boundary segments: if min_boundary > 1: indices_pair2 = [] seeds2 = segment( indices_pair, neighbor_lists) useeds2 = [ x for x in np.unique(seeds2) if x != -1 ] for seed2 in useeds2: iseed2 = [ i for i, x in enumerate(seeds2) if x == seed2 ] if len(iseed2) >= min_boundary: indices_pair2.extend(iseed2) else: if len(iseed2) == 1: print(" Remove " "assignment " "of ID {0} from " "1 vertex".format( seed2)) else: print( " Remove " "assignment " "of ID {0} from " "{1} vertices".format( seed2, len(iseed2))) indices_pair = indices_pair2 # Assign sulcus IDs to seeds: seeds[indices_pair] = ID # Identify vertices with the label: label_array = -1 * np.ones(len(points)) indices_label = [ fold[i] for i, x in enumerate(fold_labels) if x == label ] if len(indices_label): label_array[indices_label] = 1 # Propagate from seeds to vertices with label: #indices_seeds = [] #for seed in range(int(max(seeds))+1): # indices_seeds.append([i for i,x # in enumerate(seeds) # if x == seed]) #sulci2 = segment(indices_label, neighbor_lists, # 50, indices_seeds, False, True, # labels) sulci2 = propagate(points, faces, label_array, seeds, sulci, max_iters=10000, tol=0.001, sigma=5) sulci[sulci2 != -1] = sulci2[sulci2 != -1] #------------------------------------------------------------------------- # Print out assigned sulci #------------------------------------------------------------------------- sulcus_numbers = [int(x) for x in np.unique(sulci) if x != -1] # if not np.isnan(x)] n_sulci = len(sulcus_numbers) print("Extracted {0} sulci from {1} folds ({2:.1f}s):".format( n_sulci, n_folds, time() - t0)) if sulcus_names: for sulcus_number in sulcus_numbers: print(" {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number])) elif sulcus_numbers: print(" " + ", ".join([str(x) for x in sulcus_numbers])) #------------------------------------------------------------------------- # Print out unresolved sulci #------------------------------------------------------------------------- unresolved = [i for i in range(len(pair_lists)) if i not in sulcus_numbers] if len(unresolved) == 1: print("The following sulcus is unaccounted for:") else: print("The following {0} sulci are unaccounted for:".format( len(unresolved))) if sulcus_names: for sulcus_number in unresolved: print(" {0}: {1}".format(sulcus_number, sulcus_names[sulcus_number])) else: print(" " + ", ".join([str(x) for x in unresolved])) #------------------------------------------------------------------------- # Return sulci, number of sulci, and file name #------------------------------------------------------------------------- sulci = [int(x) for x in sulci] sulci_file = os.path.join(os.getcwd(), 'sulci.vtk') rewrite_scalars(labels_file, sulci_file, sulci, 'sulci', sulci) if not os.path.exists(sulci_file): raise (IOError(sulci_file + " not found")) return sulci, n_sulci, sulci_file
def close_surface_pair(faces, points1, points2, scalars, background_value=-1): """ Close a surface patch by connecting its border vertices with corresponding vertices in a second surface file. Assumes no lines or indices when reading VTK files in. Note :: Scalar values different than background define the surface patch. The two sets of points have a 1-to-1 mapping; they are from two surfaces whose corresponding vertices are shifted in position. For pial vs. gray-white matter, the two surfaces are not parallel, so connecting the vertices leads to intersecting faces. Parameters ---------- faces : list of lists of integers each sublist contains 3 indices of vertices that form a face on a surface mesh points1 : list of lists of floats each sublist contains 3-D coordinates of a vertex on a surface mesh points2 : list of lists of floats points from second surface with 1-to-1 correspondence with points1 scalars : numpy array of integers labels used to find foreground vertices background_value : integer scalar value for background vertices Returns ------- closed_faces : list of lists of integers indices of vertices that form a face on the closed surface mesh closed_points : list of lists of floats 3-D coordinates from points1 and points2 closed_scalars : list of integers scalar values for points1 and points2 Examples -------- >>> # Example 1: build a cube by closing two parallel planes: >>> import os >>> from mindboggle.utils.morph import close_surface_pair >>> from mindboggle.utils.plots import plot_surfaces >>> from mindboggle.utils.io_vtk import write_vtk >>> # Build plane: >>> background_value = -1 >>> n = 10 # plane edge length >>> points1 = [] >>> for x in range(n): >>> for y in range(n): >>> points1.append([x,y,0]) >>> points2 = [[x[0],x[1],1] for x in points1] >>> scalars = [background_value for x in range(len(points1))] >>> p = n*(n-1)/2 - 1 >>> for i in [p, p+1, p+n, p+n+1]: >>> scalars[i] = 1 >>> faces = [] >>> for x in range(n-1): >>> for y in range(n-1): >>> faces.append([x+y*n,x+n+y*n,x+n+1+y*n]) >>> faces.append([x+y*n,x+1+y*n,x+n+1+y*n]) >>> #write_vtk('plane.vtk', points1, [], [], faces, scalars) >>> #plot_surfaces('plane.vtk') # doctest: +SKIP >>> closed_faces, closed_points, closed_scalars = close_surface_pair(faces, points1, points2, scalars, background_value) >>> # View: >>> write_vtk('cube.vtk', closed_points, [], [], closed_faces, closed_scalars, 'int') >>> plot_surfaces('cube.vtk') # doctest: +SKIP >>> # >>> # Example 2: Gray and white cortical brain surfaces: >>> import os >>> from mindboggle.utils.morph import close_surface_pair >>> from mindboggle.utils.plots import plot_surfaces >>> from mindboggle.utils.io_vtk import read_scalars, read_vtk, read_points, write_vtk >>> path = os.environ['MINDBOGGLE_DATA'] >>> patch_surface1 = 'fold.pial.vtk' >>> whole_surface2 = 'fold.white.vtk' >>> # Select a single fold: >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk') >>> points1 = read_points(folds_file) >>> scalars, name = read_scalars(folds_file, True, True) >>> fold_number = 11 >>> scalars[scalars != fold_number] = -1 >>> white_surface = os.path.join(path, 'arno', 'freesurfer', 'lh.white.vtk') >>> faces, u1, u2, points2, N, u3, u4, u5 = read_vtk(white_surface) >>> background_value = -1 >>> closed_faces, closed_points, closed_scalars = close_surface_pair(faces, points1, points2, scalars, background_value) >>> # View: >>> write_vtk('closed.vtk', closed_points, [], [], closed_faces, closed_scalars, name, 'int') >>> plot_surfaces('closed.vtk') # doctest: +SKIP """ import sys import numpy as np from mindboggle.utils.mesh import find_neighbors, remove_faces from mindboggle.utils.segment import extract_borders if isinstance(scalars, list): scalars = np.array(scalars) N = len(points1) closed_points = points1 + points2 # Find all vertex neighbors and surface patch border vertices: neighbor_lists = find_neighbors(faces, N) I = np.where(scalars != background_value)[0] scalars[scalars == background_value] = background_value + 1 scalars[I] = background_value + 2 scalars = scalars.tolist() borders, u1, u2 = extract_borders(range(N), scalars, neighbor_lists) if not len(borders): sys.exit('There are no border vertices!') borders = [x for x in borders if x in I] # Reindex copy of faces and combine with original (both zero-index): indices = range(N) indices2 = range(N, 2 * N) reindex = dict([(index, indices2[i]) for i, index in enumerate(indices)]) faces = remove_faces(faces, I) faces2 = [[reindex[i] for i in face] for face in faces] closed_faces = faces + faces2 # Connect border vertices between surface patches and add new faces: add_faces = [] taken_already = [] for index in borders: if index not in taken_already: neighbors = list(set(neighbor_lists[index]).intersection(borders)) taken_already.append(index) #taken_already.extend([index] + neighbors) for neighbor in neighbors: add_faces.append([index, index + N, neighbor]) add_faces.append([index + N, neighbor, neighbor + N]) closed_faces = closed_faces + add_faces closed_scalars = scalars * 2 return closed_faces, closed_points, closed_scalars
print('Input fundi:' + fundi_file) print('Input folds:' + folds_file) print('Input labels:' + labels_file) print('***') # Load fundi, folds, labels fundi, name = read_scalars(fundi_file, return_arrays=True) folds, name = read_scalars(folds_file, return_arrays=True) faces, lines, indices, points, npoints, labels, scalar_names = load_vtk(labels_file, return_arrays=True) # List of indices to fold vertices fold_indices = [i for i,x in enumerate(folds) if x > 0] # Calculate neighbor lists for all points print('Find neighbors to all vertices...') neighbor_lists = find_neighbors(faces, npoints) # Prepare list of all unique sorted label pairs in the labeling protocol print('Prepare a list of unique, sorted label pairs in the protocol...') n_fundi = len(sulcus_label_pair_lists) # Find label boundary points in any of the folds print('Find label boundary points in any of the folds...') border_indices, border_label_tuples, unique_border_label_tuples = \ extract_borders(fold_indices, labels, neighbor_lists) if not len(border_indices): sys.exit('There are no label boundary points!') # Initialize an array of label boundaries fundus IDs # (label boundary vertices that define sulci in the labeling protocol) print('Build an array of label boundary fundus IDs...')
def extract_subfolds(depth_file, folds, min_size=10, depth_factor=0.25, depth_ratio=0.1, tolerance=0.01, save_file=False): """ Use depth to segment folds into subfolds in a triangular surface mesh. Note :: The function extract_sulci() performs about the same whether folds or subfolds are used as input. The latter leads to some loss of small subfolds and possibly holes for small subfolds in the middle of other subfolds. Note about the watershed() function: The watershed() function performs individual seed growing from deep seeds, repeats segmentation from the resulting seeds until each seed's segment touches a boundary. The function segment() fills in the rest. Finally segments are joined if their seeds are too close to each other. Despite these precautions, the order of seed selection in segment() could possibly influence the resulting borders between adjoining segments. [The propagate() function is slower and insensitive to depth, but is not biased by seed order.] Parameters ---------- depth_file : string surface mesh file in VTK format with faces and depth scalar values folds : list of integers fold numbers for all vertices (-1 for non-fold vertices) min_size : integer minimum number of vertices for a subfold depth_factor : float watershed() depth_factor: factor to determine whether to merge two neighboring watershed catchment basins -- they are merged if the Euclidean distance between their basin seeds is less than this fraction of the maximum Euclidean distance between points having minimum and maximum depths depth_ratio : float watershed() depth_ratio: the minimum fraction of depth for a neighboring shallower watershed catchment basin (otherwise merged with the deeper basin) tolerance : float watershed() tolerance: tolerance for detecting differences in depth between vertices save_file : Boolean save output VTK file? Returns ------- subfolds : list of integers fold numbers for all vertices (-1 for non-fold vertices) n_subfolds : int number of subfolds subfolds_file : string (if save_file) name of output VTK file with fold IDs (-1 for non-fold vertices) Examples -------- >>> import os >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars >>> from mindboggle.utils.mesh import find_neighbors_from_file >>> from mindboggle.features.folds import extract_subfolds >>> from mindboggle.utils.plots import plot_surfaces >>> path = os.environ['MINDBOGGLE_DATA'] >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk') >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk') >>> folds, name = read_scalars(folds_file) >>> min_size = 10 >>> depth_factor = 0.5 >>> depth_ratio = 0.1 >>> tolerance = 0.01 >>> # >>> subfolds, n_subfolds, subfolds_file = extract_subfolds(depth_file, >>> folds, min_size, depth_factor, depth_ratio, tolerance, True) >>> # >>> # View: >>> rewrite_scalars(depth_file, 'subfolds.vtk', subfolds, 'subfolds', subfolds) >>> plot_surfaces('subfolds.vtk') """ import os import numpy as np from time import time from mindboggle.utils.io_vtk import rewrite_scalars, read_vtk from mindboggle.utils.mesh import find_neighbors from mindboggle.utils.segment import segment, propagate, watershed print("Segment folds into subfolds") t0 = time() #------------------------------------------------------------------------- # Load depth values for all vertices #------------------------------------------------------------------------- faces, lines, indices, points, npoints, depths, \ name, input_vtk = read_vtk(depth_file, return_first=True, return_array=True) #------------------------------------------------------------------------- # Find neighbors for each vertex #------------------------------------------------------------------------- neighbor_lists = find_neighbors(faces, npoints) #------------------------------------------------------------------------- # Segment folds into "watershed basins" #------------------------------------------------------------------------- indices_folds = [i for i, x in enumerate(folds) if x != -1] subfolds, seed_indices = watershed(depths, points, indices_folds, neighbor_lists, min_size, depth_factor=0.25, depth_ratio=0.1, tolerance=0.01, regrow=True) # Print statement n_subfolds = len([x for x in np.unique(subfolds) if x != -1]) print(' ...Extracted {0} subfolds ({1:.2f} seconds)'.format( n_subfolds, time() - t0)) #------------------------------------------------------------------------- # Return subfolds, number of subfolds, file name #------------------------------------------------------------------------- if save_file: subfolds_file = os.path.join(os.getcwd(), 'subfolds.vtk') rewrite_scalars(depth_file, subfolds_file, subfolds, 'subfolds', subfolds) if not os.path.exists(subfolds_file): raise (IOError(subfolds_file + " not found")) else: subfolds_file = None return subfolds, n_subfolds, subfolds_file
def realign_boundaries_to_fundus_lines(surf_file, init_label_file, fundus_lines_file, thickness_file, out_label_file=None): """ Fix label boundaries to fundus lines. Parameters ---------- surf_file : file containing the surface geometry in vtk format init_label_file : file containing scalars that represent the initial guess at labels fundus_lines_file : file containing scalars representing fundus lines. thickness_file: file containing cortical thickness scalar data (for masking out the medial wall only) out_label_file : if specified, the realigned labels will be writen to this file Returns ------- numpy array representing the realigned label for each surface vertex. """ import numpy as np from mindboggle.utils.segment import extract_borders import mindboggle.utils.graph as go from mindboggle.utils.io_vtk import read_vtk, read_scalars, write_vtk from mindboggle.utils.mesh import find_neighbors import propagate_fundus_lines ## read files faces, _, indices, points, num_points, _, _, _ = read_vtk( surf_file, return_first=True, return_array=True) indices = range(num_points) init_labels, _ = read_scalars(init_label_file, return_first=True, return_array=True) fundus_lines, _ = read_scalars(fundus_lines_file, return_first=True, return_array=True) thickness, _ = read_scalars(thickness_file, return_first=True, return_array=True) # remove labels from vertices with zero thickness (get around # DKT40 annotations having the label '3' for all the Corpus # Callosum vertices). cc_inds = [x for x in indices if thickness[x] < 0.001] init_labels[cc_inds] = 0 ## setup seeds from initial label boundaries neighbor_lists = find_neighbors(faces, num_points) # extract all vertices that are on a boundary between labels boundary_indices, label_pairs, _ = extract_borders(indices, init_labels, neighbor_lists, return_label_pairs=True) # split boundary vertices into segments with common boundary pairs. boundary_segments = {} for boundary_index, label_pair in zip(boundary_indices, label_pairs): key = ((label_pair[0], label_pair[1]) if label_pair[0] < label_pair[1] else (label_pair[1], label_pair[0])) if key not in boundary_segments: boundary_segments[key] = [] boundary_segments[key].append(boundary_index) boundary_matrix, boundary_matrix_keys = _build_boundary_matrix( boundary_segments, num_points) # build the affinity matrix affinity_matrix = go.weight_graph(np.array(points), indices, np.array(faces), sigma=10, add_to_graph=False) ## propagate boundaries to fundus line vertices learned_matrix = _propagate_labels(affinity_matrix, boundary_matrix, boundary_indices, 100, 1) # assign labels to fundus line vertices based on highest probability new_boundaries = -1 * np.ones(init_labels.shape) fundus_line_indices = [i for i, x in enumerate(fundus_lines) if x > 0.5] # tile the surface into connected components delimited by fundus lines closed_fundus_lines, _, _ = propagate_fundus_lines.propagate_fundus_lines( points, faces, fundus_line_indices, thickness) closed_fundus_line_indices = np.where(closed_fundus_lines > 0)[0] # split surface into connected components connected_component_faces = _remove_boundary_faces( points, faces, closed_fundus_line_indices) # label components based on most probable label assignment new_labels = _label_components(connected_component_faces, num_points, boundary_indices, learned_matrix, boundary_matrix_keys) # propagate new labels to fill holes label_matrix, label_map = _build_label_matrix(new_labels) new_learned_matrix = _propagate_labels( affinity_matrix, label_matrix, [i for i in range(num_points) if new_labels[i] >= 0], 100, 1) # assign most probable labels for idx in [i for i in range(num_points) if new_labels[i] == -1]: max_idx = np.argmax(new_learned_matrix[idx]) new_labels[idx] = label_map[max_idx] # save if out_label_file is not None: write_vtk(out_label_file, points, faces=faces, scalars=[int(x) for x in new_labels], scalar_type='int') return new_labels
def extract_folds(depth_file, min_fold_size=50, tiny_depth=0.001, save_file=False): """ Use depth to extract folds from a triangular surface mesh. Steps :: 1. Compute histogram of depth measures. 2. Define a depth threshold and find the deepest vertices. 3. Segment deep vertices as an initial set of folds. 4. Remove small folds. 5. Find and fill holes in the folds. 6. Renumber folds. Step 2 :: To extract an initial set of deep vertices from the surface mesh, we anticipate that there will be a rapidly decreasing distribution of low depth values (on the outer surface) with a long tail of higher depth values (in the folds), so we smooth the histogram's bin values, convolve to compute slopes, and find the depth value for the first bin with slope = 0. This is our threshold. Step 5 :: The folds could have holes in areas shallower than the depth threshold. Calling fill_holes() could accidentally include very shallow areas (in an annulus-shaped fold, for example), so we call fill_holes() with the argument exclude_range set close to zero to retain these areas. Parameters ---------- depth_file : string surface mesh file in VTK format with faces and depth scalar values min_fold_size : integer minimum fold size (number of vertices) tiny_depth : float largest non-zero depth value that will stop a hole from being filled save_file : Boolean save output VTK file? Returns ------- folds : list of integers fold numbers for all vertices (-1 for non-fold vertices) n_folds : int number of folds depth_threshold : float threshold defining the minimum depth for vertices to be in a fold bins : list of integers histogram bins: each is the number of vertices within a range of depth values bin_edges : list of floats histogram bin edge values defining the bin ranges of depth values folds_file : string (if save_file) name of output VTK file with fold IDs (-1 for non-fold vertices) Examples -------- >>> import os >>> import numpy as np >>> import pylab >>> from scipy.ndimage.filters import gaussian_filter1d >>> from mindboggle.utils.io_vtk import read_scalars >>> from mindboggle.utils.mesh import find_neighbors_from_file >>> from mindboggle.utils.plots import plot_vtk >>> from mindboggle.features.folds import extract_folds >>> path = os.environ['MINDBOGGLE_DATA'] >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk') >>> neighbor_lists = find_neighbors_from_file(depth_file) >>> min_fold_size = 50 >>> tiny_depth = 0.001 >>> save_file = True >>> # >>> folds, n_folds, thr, bins, bin_edges, folds_file = extract_folds(depth_file, >>> min_fold_size, tiny_depth, save_file) >>> # >>> # View folds: >>> plot_vtk('folds.vtk') >>> # Plot histogram and depth threshold: >>> depths, name = read_scalars(depth_file) >>> nbins = np.round(len(depths) / 100.0) >>> a,b,c = pylab.hist(depths, bins=nbins) >>> pylab.plot(thr*np.ones((100,1)), np.linspace(0, max(bins), 100), 'r.') >>> pylab.show() >>> # Plot smoothed histogram: >>> bins_smooth = gaussian_filter1d(bins.tolist(), 5) >>> pylab.plot(range(len(bins)), bins, '.', range(len(bins)), bins_smooth,'-') >>> pylab.show() """ import os import sys import numpy as np from time import time from scipy.ndimage.filters import gaussian_filter1d from mindboggle.utils.io_vtk import rewrite_scalars, read_vtk from mindboggle.utils.mesh import find_neighbors from mindboggle.utils.morph import fill_holes from mindboggle.utils.segment import segment do_fill_holes = True print("Extract folds in surface mesh") t0 = time() #------------------------------------------------------------------------- # Load depth values for all vertices #------------------------------------------------------------------------- faces, lines, indices, points, npoints, depths, name, input_vtk = read_vtk(depth_file, return_first=True, return_array=True) #------------------------------------------------------------------------- # Find neighbors for each vertex #------------------------------------------------------------------------- neighbor_lists = find_neighbors(faces, npoints) #------------------------------------------------------------------------- # Compute histogram of depth measures #------------------------------------------------------------------------- min_vertices = 10000 if npoints > min_vertices: nbins = np.round(npoints / 100.0) else: sys.err(" Expecting at least {0} vertices to create depth histogram". format(min_vertices)) bins, bin_edges = np.histogram(depths, bins=nbins) #------------------------------------------------------------------------- # Anticipating that there will be a rapidly decreasing distribution # of low depth values (on the outer surface) with a long tail of higher # depth values (in the folds), smooth the bin values (Gaussian), convolve # to compute slopes, and find the depth for the first bin with slope = 0. #------------------------------------------------------------------------- bins_smooth = gaussian_filter1d(bins.tolist(), 5) window = [-1, 0, 1] bin_slopes = np.convolve(bins_smooth, window, mode='same') / (len(window) - 1) ibins0 = np.where(bin_slopes == 0)[0] if ibins0.shape: depth_threshold = bin_edges[ibins0[0]] else: depth_threshold = np.median(depths) #------------------------------------------------------------------------- # Find the deepest vertices #------------------------------------------------------------------------- indices_deep = [i for i,x in enumerate(depths) if x >= depth_threshold] if indices_deep: #--------------------------------------------------------------------- # Segment deep vertices as an initial set of folds #--------------------------------------------------------------------- print(" Segment vertices deeper than {0:.2f} as folds".format(depth_threshold)) t1 = time() folds = segment(indices_deep, neighbor_lists) # Slightly slower alternative -- fill boundaries: #regions = -1 * np.ones(len(points)) #regions[indices_deep] = 1 #folds = segment_by_filling_borders(regions, neighbor_lists) print(' ...Segmented folds ({0:.2f} seconds)'.format(time() - t1)) #--------------------------------------------------------------------- # Remove small folds #--------------------------------------------------------------------- if min_fold_size > 1: print(' Remove folds smaller than {0}'.format(min_fold_size)) unique_folds = [x for x in np.unique(folds) if x > -1] for nfold in unique_folds: indices_fold = [i for i,x in enumerate(folds) if x == nfold] if len(indices_fold) < min_fold_size: folds[indices_fold] = -1 #--------------------------------------------------------------------- # Find and fill holes in the folds # Note: Surfaces surrounded by folds can be mistaken for holes, # so exclude_range includes outer surface values close to zero. #--------------------------------------------------------------------- if do_fill_holes: print(" Find and fill holes in the folds") folds = fill_holes(folds, neighbor_lists, values=depths, exclude_range=[0, tiny_depth]) #--------------------------------------------------------------------- # Renumber folds so they are sequential #--------------------------------------------------------------------- renumber_folds = -1 * np.ones(len(folds)) fold_numbers = [int(x) for x in np.unique(folds) if x > -1] for i_fold, n_fold in enumerate(fold_numbers): fold = [i for i,x in enumerate(folds) if x == n_fold] renumber_folds[fold] = i_fold folds = renumber_folds n_folds = i_fold + 1 # Print statement print(' ...Extracted {0} folds ({1:.2f} seconds)'. format(n_folds, time() - t0)) else: print(' No deep vertices') #------------------------------------------------------------------------- # Return folds, number of folds, file name #------------------------------------------------------------------------- if save_file: folds_file = os.path.join(os.getcwd(), 'folds.vtk') rewrite_scalars(depth_file, folds_file, folds, 'folds', folds) if not os.path.exists(folds_file): raise(IOError(folds_file + " not found")) else: folds_file = None return folds.tolist(), n_folds, depth_threshold, bins, bin_edges, folds_file
def extract_borders_2nd_surface(labels_file, mask_file="", values_file=""): """ Extract borders (between labels) on a surface. Options: Mask out values; extract border values on a second surface. Parameters ---------- labels_file : string file name for surface mesh with labels mask_file : string file name for surface mesh with mask (>-1) values values_file : string file name for surface mesh with values to extract along borders Returns ------- border_file : string file name for surface mesh with label borders (-1 background values) border_values : numpy array values for all vertices (-1 for vertices not along label borders) Examples -------- >>> # Extract depth values along label borders in sulci (mask): >>> import os >>> from mindboggle.labels.labels import extract_borders_2nd_surface >>> from mindboggle.utils.plots import plot_vtk >>> path = os.environ['MINDBOGGLE_DATA'] >>> labels_file = os.path.join(path, 'arno', 'labels', 'lh.labels.DKT25.manual.vtk') >>> mask_file = os.path.join(path, 'arno', 'features', 'sulci.vtk') >>> values_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk') >>> # >>> border_file, border_values = extract_borders_2nd_surface(labels_file, mask_file, values_file) >>> # >>> plot_vtk(border_file) """ import os import numpy as np from mindboggle.utils.io_vtk import read_scalars, read_vtk, rewrite_scalars from mindboggle.utils.mesh import find_neighbors from mindboggle.labels.labels import extract_borders # Load labeled surface file faces, foo1, foo2, foo3, npoints, labels, foo4, foo5 = read_vtk(labels_file, return_first=True, return_array=True) # Detect borders neighbor_lists = find_neighbors(faces, npoints) indices_borders, foo1, foo2 = extract_borders(range(npoints), labels, neighbor_lists) # Filter values with label borders border_values = -1 * np.ones(npoints) if values_file: values, name = read_scalars(values_file, return_first=True, return_array=True) border_values[indices_borders] = values[indices_borders] else: border_values[indices_borders] = 1 # Mask values (for mask >-1) if mask_file: mask_values, name = read_scalars(mask_file) else: mask_values = [] # Write out label boundary vtk file border_file = os.path.join(os.getcwd(), "borders_" + os.path.basename(labels_file)) rewrite_scalars(labels_file, border_file, border_values, "label_borders_in_mask", mask_values) if not os.path.exists(border_file): raise (IOError(border_file + " not found")) return border_file, border_values
def realign_boundaries_to_fundus_lines( surf_file, init_label_file, fundus_lines_file, out_label_file=None): """ Fix label boundaries to fundus lines. Parameters ---------- surf_file : file containing the surface geometry in vtk format init_label_file : file containing scalars that represent the initial guess at labels fundus_lines_file : file containing scalars representing fundus lines. out_label_file : if specified, the realigned labels will be writen to this file Returns ------- numpy array representing the realigned label for each surface vertex. """ # import os import numpy as np from mindboggle.labels.labels import extract_borders import mindboggle.utils.graph as go from mindboggle.utils.io_vtk import read_vtk, read_scalars, write_vtk # import mindboggle.utils.kernels as kernels from mindboggle.utils.mesh import find_neighbors # from mindboggle.labels.protocol import dkt_protocol # # protocol = 'DKT25' # sulcus_names, sulcus_label_pair_lists, unique_sulcus_label_pairs, \ # label_names, label_numbers, cortex_names, cortex_numbers, \ # noncortex_names, noncortex_numbers = dkt_protocol(protocol) ## read files faces, _, indices, points, num_points, _, _, _ = read_vtk( surf_file, return_first=True, return_array=True) indices = range(num_points) init_labels, _ = read_scalars(init_label_file, return_first=True, return_array=True) fundus_lines, _ = read_scalars(fundus_lines_file, return_first=True, return_array=True) ## setup seeds from initial label boundaries neighbor_lists = find_neighbors(faces, num_points) # extract all vertices that are on a boundary between labels boundary_indices, label_pairs, _ = extract_borders( indices, init_labels, neighbor_lists, return_label_pairs=True) # split boundary vertices into segments with common boundary pairs. boundary_segments = {} for boundary_index, label_pair in zip(boundary_indices, label_pairs): key = ((label_pair[0], label_pair[1]) if label_pair[0] < label_pair[1] else (label_pair[1], label_pair[0])) if key not in boundary_segments: boundary_segments[key] = [] boundary_segments[key].append(boundary_index) boundary_matrix, boundary_matrix_keys = _build_boundary_matrix( boundary_segments, num_points) # build the affinity matrix affinity_matrix = go.weight_graph( np.array(points), indices, np.array(faces), sigma=10, add_to_graph=False) ## propagate boundaries to fundus line vertices learned_matrix = _propagate_labels( affinity_matrix, boundary_matrix, boundary_indices, 1000, 1) # assign labels to fundus line vertices based on highest probability new_boundaries = -1 * np.ones(init_labels.shape) fundus_line_indices = [i for i, x in enumerate(fundus_lines) if x > 0.5] # TODO: this currently only works for fundus lines that tile the # surface into connected components (which is fine when you want # to test this method on fundus lines generated from manual # labeling). However, to work on real data, fundus lines will # need to be connected together using shortest paths. # split surface into connected components connected_component_faces = _remove_boundary_faces( points, faces, fundus_line_indices) # label components based on most probable label assignment new_labels = _label_components( connected_component_faces, num_points, boundary_indices, learned_matrix, boundary_matrix_keys) # propagate new labels to fill holes label_matrix, label_map = _build_label_matrix(new_labels) new_learned_matrix = _propagate_labels( affinity_matrix, label_matrix, [i for i in range(num_points) if new_labels[i] >= 0], 100, 1) # assign most probable labels for idx in [i for i in range(num_points) if new_labels[i] == -1]: max_idx = np.argmax(new_learned_matrix[idx]) new_labels[idx] = label_map[max_idx] # save if out_label_file is not None: write_vtk(out_label_file, points, faces=faces, scalars=new_labels.tolist()) return new_labels
def spectrum_of_largest(points, faces, n_eigenvalues=6, exclude_labels=[-1], normalization=None, areas=None): """ Compute Laplace-Beltrami spectrum on largest connected segment. In case a surface patch is fragmented, we select the largest fragment, remove extraneous triangular faces, and reindex indices. Parameters ---------- points : list of lists of 3 floats x,y,z coordinates for each vertex of the structure faces : list of lists of 3 integers 3 indices to vertices that form a triangle on the mesh n_eigenvalues : integer number of eigenvalues to be computed (the length of the spectrum) exclude_labels : list of integers background values to exclude normalization : string the method used to normalize eigenvalues ('area' or None) if "area", use area of the 2D structure as in Reuter et al. 2006 areas : numpy array or list of floats (or None) surface area scalar values for all vertices Returns ------- spectrum : list first n_eigenvalues eigenvalues for Laplace-Beltrami spectrum Examples -------- >>> # Spectrum for one label (artificial composite), two fragments: >>> import os >>> import numpy as np >>> from mindboggle.utils.io_vtk import read_scalars, read_vtk, write_vtk >>> from mindboggle.utils.mesh import remove_faces >>> from mindboggle.shapes.laplace_beltrami import spectrum_of_largest >>> path = os.environ['MINDBOGGLE_DATA'] >>> label_file = os.path.join(path, 'arno', 'labels', 'lh.labels.DKT25.manual.vtk') >>> area_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.area.vtk') >>> n_eigenvalues = 6 >>> exclude_labels = [0] #[-1] >>> normalization = None >>> faces, lines, indices, points, foo1, labels, foo2, foo3 = read_vtk(label_file, >>> return_first=True, return_array=True) >>> I2 = [i for i,x in enumerate(labels) if x==2] # cingulate >>> I22 = [i for i,x in enumerate(labels) if x==22] # postcentral >>> I2.extend(I22) >>> faces = remove_faces(faces, I2) >>> areas, u1 = read_scalars(area_file, True, True) >>> # >>> spectrum_of_largest(points, faces, n_eigenvalues, exclude_labels, >>> normalization, areas) >>> # >>> # View: >>> from mindboggle.utils.plots import plot_vtk >>> scalars = np.zeros(np.shape(labels)) >>> scalars[I2] = 1 >>> vtk_file = 'test_two_labels.vtk' >>> write_vtk(vtk_file, points, indices, lines, faces, >>> scalars, scalar_names='scalars') >>> plot_vtk(vtk_file) Load "Labels" scalars from lh.labels.DKT25.manual.vtk Reduced 290134 to 29728 triangular faces Load "scalars" scalars from lh.pial.area.vtk 2 segments Reduced 29728 to 14498 triangular faces Compute linear FEM Laplace-Beltrami spectrum [-8.764053090852845e-18, 0.00028121452203987146, 0.0010941205613292243, 0.0017301461686759188, 0.0034244633555606295, 0.004280982704174599] """ from scipy.sparse.linalg import eigsh, lobpcg import numpy as np from mindboggle.utils.mesh import find_neighbors, remove_faces, \ reindex_faces_points from mindboggle.utils.segment import segment from mindboggle.shapes.laplace_beltrami import fem_laplacian # Areas: use_area = False if isinstance(areas, np.ndarray) and np.shape(areas): use_area = True elif isinstance(areas, list) and len(areas): areas = np.array(areas) use_area = True # Check to see if there are enough points: min_npoints = n_eigenvalues npoints = len(points) if npoints < min_npoints or len(faces) < min_npoints: print("The input size {0} ({1} faces) should be much larger " "than n_eigenvalues {2}". format(npoints, len(faces), n_eigenvalues)) return None else: #--------------------------------------------------------------------- # Segment the indices into connected sets of indices: #--------------------------------------------------------------------- # Construct neighbor lists: neighbor_lists = find_neighbors(faces, npoints) # Determine the indices: indices = [x for sublst in faces for x in sublst] # Segment: segments = segment(indices, neighbor_lists, min_region_size=1, seed_lists=[], keep_seeding=False, spread_within_labels=False, labels=[], label_lists=[], values=[], max_steps='', verbose=False) #--------------------------------------------------------------------- # Select the largest segment (connected set of indices): #--------------------------------------------------------------------- unique_segments = [x for x in np.unique(segments) if x not in exclude_labels] if len(unique_segments) > 1: select_indices = [] max_segment_area = 0 for segment_number in unique_segments: segment_indices = [i for i,x in enumerate(segments) if x == segment_number] if use_area: segment_area = np.sum(areas[segment_indices]) else: segment_area = len(segment_indices) if segment_area > max_segment_area: select_indices = segment_indices max_segment_area = len(select_indices) print('Maximum size of {0} segments: {1} vertices'. format(len(unique_segments), len(select_indices))) #----------------------------------------------------------------- # Extract points and renumber faces for the selected indices: #----------------------------------------------------------------- faces = remove_faces(faces, select_indices) else: select_indices = indices # Alert if the number of indices is small: if len(select_indices) < min_npoints: print("The input size {0} is too small.".format(len(select_indices))) return None elif faces: #----------------------------------------------------------------- # Reindex indices in faces: #----------------------------------------------------------------- faces, points = reindex_faces_points(faces, points) #----------------------------------------------------------------- # Compute spectrum: #----------------------------------------------------------------- spectrum = fem_laplacian(points, faces, n_eigenvalues, normalization) return spectrum else: return None
def evaluate_deep_features(features_file, labels_file, sulci_file='', hemi='', excludeIDs=[-1], output_vtk_name='', verbose=True): """ Evaluate deep surface features by computing the minimum distance from each label border vertex to all of the feature vertices in the same sulcus, and from each feature vertex to all of the label border vertices in the same sulcus. The label borders run along the deepest parts of sulci and correspond to fundi in the DKT cortical labeling protocol. Parameters ---------- features_file : string VTK surface file with feature numbers for vertex scalars labels_file : string VTK surface file with label numbers for vertex scalars sulci_file : string VTK surface file with sulcus numbers for vertex scalars excludeIDs : list of integers feature/sulcus/label IDs to exclude (background set to -1) output_vtk_name : Boolean if not empty, output a VTK file beginning with output_vtk_name that contains a surface with mean distances as scalars verbose : Boolean print mean distances to standard output? Returns ------- feature_to_border_mean_distances : numpy array [number of features x 1] mean distance from each feature to sulcus label border feature_to_border_sd_distances : numpy array [number of features x 1] standard deviations of feature-to-border distances feature_to_border_distances_vtk : string VTK surface file containing feature-to-border distances border_to_feature_mean_distances : numpy array [number of features x 1] mean distances from each sulcus label border to feature border_to_feature_sd_distances : numpy array [number of features x 1] standard deviations of border-to-feature distances border_to_feature_distances_vtk : string VTK surface file containing border-to-feature distances """ import os import sys import numpy as np from mindboggle.utils.io_vtk import read_vtk, read_scalars, write_vtk from mindboggle.utils.mesh import find_neighbors, remove_faces from mindboggle.utils.segment import extract_borders from mindboggle.utils.compute import source_to_target_distances from mindboggle.LABELS import DKTprotocol dkt = DKTprotocol() #------------------------------------------------------------------------- # Load labels, features, and sulci: #------------------------------------------------------------------------- faces, lines, indices, points, npoints, labels, scalar_names, \ input_vtk = read_vtk(labels_file, True, True) features, name = read_scalars(features_file, True, True) if sulci_file: sulci, name = read_scalars(sulci_file, True, True) # List of indices to sulcus vertices: sulcus_indices = [i for i, x in enumerate(sulci) if x != -1] segmentIDs = sulci sulcus_faces = remove_faces(faces, sulcus_indices) else: sulcus_indices = range(len(labels)) segmentIDs = [] sulcus_faces = faces #------------------------------------------------------------------------- # Prepare neighbors, label pairs, border IDs, and outputs: #------------------------------------------------------------------------- # Calculate neighbor lists for all points: print('Find neighbors for all vertices...') neighbor_lists = find_neighbors(faces, npoints) # Find label border points in any of the sulci: print('Find label border points in any of the sulci...') border_indices, border_label_tuples, unique_border_label_tuples = \ extract_borders(sulcus_indices, labels, neighbor_lists, ignore_values=[], return_label_pairs=True) if not len(border_indices): sys.exit('There are no label border points!') # Initialize an array of label border IDs # (label border vertices that define sulci in the labeling protocol): print('Build an array of label border IDs...') label_borders = -1 * np.ones(npoints) if hemi == 'lh': nsulcus_lists = len(dkt.left_sulcus_label_pair_lists) else: nsulcus_lists = len(dkt.right_sulcus_label_pair_lists) feature_to_border_mean_distances = -1 * np.ones(nsulcus_lists) feature_to_border_sd_distances = -1 * np.ones(nsulcus_lists) border_to_feature_mean_distances = -1 * np.ones(nsulcus_lists) border_to_feature_sd_distances = -1 * np.ones(nsulcus_lists) feature_to_border_distances_vtk = '' border_to_feature_distances_vtk = '' #------------------------------------------------------------------------- # Loop through sulci: #------------------------------------------------------------------------- # For each list of sorted label pairs (corresponding to a sulcus): for isulcus, label_pairs in enumerate(dkt.sulcus_label_pair_lists): # Keep the border points with label pair labels: label_pair_border_indices = [ x for i, x in enumerate(border_indices) if np.unique(border_label_tuples[i]).tolist() in label_pairs ] # Store the points as sulcus IDs in the border IDs array: if label_pair_border_indices: label_borders[label_pair_border_indices] = isulcus if len(np.unique(label_borders)) > 1: #--------------------------------------------------------------------- # Construct a feature-to-border distance matrix and VTK file: #--------------------------------------------------------------------- # Construct a distance matrix: print('Construct a feature-to-border distance matrix...') sourceIDs = features targetIDs = label_borders distances, distance_matrix = source_to_target_distances( sourceIDs, targetIDs, points, segmentIDs, excludeIDs) # Compute mean distances for each feature: nfeatures = min(np.shape(distance_matrix)[1], nsulcus_lists) for ifeature in range(nfeatures): feature_distances = [ x for x in distance_matrix[:, ifeature] if x != -1 ] feature_to_border_mean_distances[ifeature] = \ np.mean(feature_distances) feature_to_border_sd_distances[ifeature] = \ np.std(feature_distances) if verbose: print('Feature-to-border mean distances:') print(feature_to_border_mean_distances) print('Feature-to-border standard deviations of distances:') print(feature_to_border_sd_distances) # Write resulting feature-label border distances to VTK file: if output_vtk_name: feature_to_border_distances_vtk = os.path.join( os.getcwd(), output_vtk_name + '_feature_to_border_mean_distances.vtk') print('Write feature-to-border distances to {0}...'.format( feature_to_border_distances_vtk)) write_vtk(feature_to_border_distances_vtk, points, [], [], sulcus_faces, [distances], ['feature-to-border_distances'], 'float') #--------------------------------------------------------------------- # Construct a border-to-feature distance matrix and VTK file: #--------------------------------------------------------------------- # Construct a distance matrix: print('Construct a border-to-feature distance matrix...') sourceIDs = label_borders targetIDs = features distances, distance_matrix = source_to_target_distances( sourceIDs, targetIDs, points, segmentIDs, excludeIDs) # Compute mean distances for each feature: nfeatures = min(np.shape(distance_matrix)[1], nsulcus_lists) for ifeature in range(nfeatures): border_distances = [ x for x in distance_matrix[:, ifeature] if x != -1 ] border_to_feature_mean_distances[ifeature] = \ np.mean(border_distances) border_to_feature_sd_distances[ifeature] = \ np.std(border_distances) if verbose: print('border-to-feature mean distances:') print(border_to_feature_mean_distances) print('border-to-feature standard deviations of distances:') print(border_to_feature_sd_distances) # Write resulting feature-label border distances to VTK file: if output_vtk_name: border_to_feature_distances_vtk = os.path.join( os.getcwd(), output_vtk_name + '_border_to_feature_mean_distances.vtk') print('Write border-to-feature distances to {0}...'.format( border_to_feature_distances_vtk)) write_vtk(border_to_feature_distances_vtk, points, [], [], sulcus_faces, [distances], ['border-to-feature_distances'], 'float') #------------------------------------------------------------------------- # Return outputs: #------------------------------------------------------------------------- return feature_to_border_mean_distances, feature_to_border_sd_distances,\ feature_to_border_distances_vtk,\ border_to_feature_mean_distances, border_to_feature_sd_distances,\ border_to_feature_distances_vtk
def evaluate_deep_features(features_file, labels_file, sulci_file='', hemi='', excludeIDs=[-1], output_vtk_name='', verbose=True): """ Evaluate deep surface features by computing the minimum distance from each label boundary vertex to all of the feature vertices in the same sulcus, and from each feature vertex to all of the label boundary vertices in the same sulcus. The label boundaries run along the deepest parts of sulci and correspond to fundi in the DKT cortical labeling protocol. Parameters ---------- features_file : string VTK surface file with feature numbers for vertex scalars labels_file : string VTK surface file with label numbers for vertex scalars sulci_file : string VTK surface file with sulcus numbers for vertex scalars excludeIDs : list of integers feature/sulcus/label IDs to exclude (background set to -1) output_vtk_name : Boolean if not empty, output a VTK file beginning with output_vtk_name that contains a surface with mean distances as scalars verbose : Boolean print mean distances to standard output? Returns ------- feature_to_fundus_mean_distances : numpy array [number of features x 1] mean distance from each feature to sulcus label boundary ("fundus") feature_to_fundus_sd_distances : numpy array [number of features x 1] standard deviations of feature-to-fundus distances feature_to_fundus_mean_distances_vtk : string VTK surface file containing feature_to_fundus_mean_distances fundus_to_feature_mean_distances : numpy array [number of features x 1] mean distances from each sulcus label boundary ("fundus") to feature fundus_to_feature_sd_distances : numpy array [number of features x 1] standard deviations of fundus-to-feature distances fundus_to_feature_mean_distances_vtk : string VTK surface file containing fundus_to_feature_mean_distances """ import os import sys import numpy as np from mindboggle.utils.io_vtk import read_vtk, read_scalars, write_vtk from mindboggle.utils.mesh import find_neighbors, remove_faces from mindboggle.utils.segment import extract_borders from mindboggle.utils.compute import source_to_target_distances from mindboggle.LABELS import DKTprotocol dkt = DKTprotocol() #------------------------------------------------------------------------- # Load labels, features, and sulci: #------------------------------------------------------------------------- faces, lines, indices, points, npoints, labels, scalar_names, \ input_vtk = read_vtk(labels_file, True, True) features, name = read_scalars(features_file, True, True) if sulci_file: sulci, name = read_scalars(sulci_file, True, True) # List of indices to sulcus vertices: sulcus_indices = [i for i,x in enumerate(sulci) if x != -1] segmentIDs = sulci sulcus_faces = remove_faces(faces, sulcus_indices) else: sulcus_indices = range(len(labels)) segmentIDs = [] sulcus_faces = faces #------------------------------------------------------------------------- # Prepare neighbors, label pairs, fundus IDs, and outputs: #------------------------------------------------------------------------- # Calculate neighbor lists for all points: print('Find neighbors to all vertices...') neighbor_lists = find_neighbors(faces, npoints) # Find label boundary points in any of the sulci: print('Find label boundary points in any of the sulci...') border_indices, border_label_tuples, unique_border_label_tuples = \ extract_borders(sulcus_indices, labels, neighbor_lists, ignore_values=[], return_label_pairs=True) if not len(border_indices): sys.exit('There are no label boundary points!') # Initialize an array of label boundaries fundus IDs # (label boundary vertices that define sulci in the labeling protocol): print('Build an array of label boundary fundus IDs...') label_boundary_fundi = -1 * np.ones(npoints) if hemi == 'lh': nsulcus_lists = len(dkt.left_sulcus_label_pair_lists) else: nsulcus_lists = len(dkt.right_sulcus_label_pair_lists) feature_to_fundus_mean_distances = -1 * np.ones(nsulcus_lists) feature_to_fundus_sd_distances = -1 * np.ones(nsulcus_lists) fundus_to_feature_mean_distances = -1 * np.ones(nsulcus_lists) fundus_to_feature_sd_distances = -1 * np.ones(nsulcus_lists) feature_to_fundus_mean_distances_vtk = '' fundus_to_feature_mean_distances_vtk = '' #------------------------------------------------------------------------- # Loop through sulci: #------------------------------------------------------------------------- # For each list of sorted label pairs (corresponding to a sulcus): for isulcus, label_pairs in enumerate(dkt.sulcus_label_pair_lists): # Keep the boundary points with label pair labels: fundus_indices = [x for i,x in enumerate(border_indices) if np.unique(border_label_tuples[i]).tolist() in label_pairs] # Store the points as sulcus IDs in the fundus IDs array: if fundus_indices: label_boundary_fundi[fundus_indices] = isulcus if len(np.unique(label_boundary_fundi)) > 1: #--------------------------------------------------------------------- # Construct a feature-to-fundus distance matrix and VTK file: #--------------------------------------------------------------------- # Construct a distance matrix: print('Construct a feature-to-fundus distance matrix...') sourceIDs = features targetIDs = label_boundary_fundi distances, distance_matrix = source_to_target_distances( sourceIDs, targetIDs, points, segmentIDs, excludeIDs) # Compute mean distances for each feature: nfeatures = min(np.shape(distance_matrix)[1], nsulcus_lists) for ifeature in range(nfeatures): feature_distances = [x for x in distance_matrix[:, ifeature] if x != -1] feature_to_fundus_mean_distances[ifeature] = \ np.mean(feature_distances) feature_to_fundus_sd_distances[ifeature] = \ np.std(feature_distances) if verbose: print('Feature-to-fundus mean distances:') print(feature_to_fundus_mean_distances) print('Feature-to-fundus standard deviations of distances:') print(feature_to_fundus_sd_distances) # Write resulting feature-label boundary distances to VTK file: if output_vtk_name: feature_to_fundus_mean_distances_vtk = os.path.join(os.getcwd(), output_vtk_name + '_feature_to_fundus_mean_distances.vtk') print('Write feature-to-fundus distances to {0}...'. format(feature_to_fundus_mean_distances_vtk)) write_vtk(feature_to_fundus_mean_distances_vtk, points, [], [], sulcus_faces, [distances], ['feature-to-fundus_distances'], 'float') #--------------------------------------------------------------------- # Construct a fundus-to-feature distance matrix and VTK file: #--------------------------------------------------------------------- # Construct a distance matrix: print('Construct a fundus-to-feature distance matrix...') sourceIDs = label_boundary_fundi targetIDs = features distances, distance_matrix = source_to_target_distances( sourceIDs, targetIDs, points, segmentIDs, excludeIDs) # Compute mean distances for each feature: nfeatures = min(np.shape(distance_matrix)[1], nsulcus_lists) for ifeature in range(nfeatures): fundus_distances = [x for x in distance_matrix[:, ifeature] if x != -1] fundus_to_feature_mean_distances[ifeature] = \ np.mean(fundus_distances) fundus_to_feature_sd_distances[ifeature] = \ np.std(fundus_distances) if verbose: print('Fundus-to-feature mean distances:') print(fundus_to_feature_mean_distances) print('Fundus-to-feature standard deviations of distances:') print(fundus_to_feature_sd_distances) # Write resulting feature-label boundary distances to VTK file: if output_vtk_name: fundus_to_feature_mean_distances_vtk = os.path.join(os.getcwd(), output_vtk_name + '_fundus_to_feature_mean_distances.vtk') print('Write fundus-to-feature distances to {0}...'. format(fundus_to_feature_mean_distances_vtk)) write_vtk(fundus_to_feature_mean_distances_vtk, points, [], [], sulcus_faces, [distances], ['fundus-to-feature_distances'], 'float') #------------------------------------------------------------------------- # Return outputs: #------------------------------------------------------------------------- return feature_to_fundus_mean_distances, feature_to_fundus_sd_distances,\ feature_to_fundus_mean_distances_vtk,\ fundus_to_feature_mean_distances, fundus_to_feature_sd_distances,\ fundus_to_feature_mean_distances_vtk
def _label_components(component_faces, num_points, boundary_indices, boundary_probability_matrix, boundary_matrix_keys): """Label the connected components of a surface with the most probable label based on the boundary_probability_matrix. """ import numpy as np from mindboggle.utils.mesh import find_neighbors neighbor_lists = find_neighbors(component_faces, num_points) result_labels = -1 * np.ones((num_points)) # find all the connected components point_visited = num_points * [False] components = {} component_boundaries = {} print "Finding connected components" while True: first_vertex = None try: first_vertex = next(i for i, v in enumerate(point_visited) if not v) except: break open_vertices = [first_vertex] point_visited[first_vertex] = True component_vertices = [] component_boundary_vertices = [] while len(open_vertices) > 0: this_vertex = open_vertices.pop() component_vertices.append(this_vertex) if this_vertex in boundary_indices: component_boundary_vertices.append(this_vertex) for neighbor in neighbor_lists[this_vertex]: if not point_visited[neighbor]: open_vertices.append(neighbor) point_visited[neighbor] = True components[len(component_vertices)] = component_vertices component_boundaries[len(component_vertices)] = \ component_boundary_vertices # compute the most probable label for each connected # component. Only boundary indices are considered when computing # label probability. # Note: Here we assume that components and component_boundaries # have the same keys. used_labels = [] print "Computing most probable labels" for component in sorted(components.keys(), None, None, True): label_likelihoods = {} for vertex in component_boundaries[component]: for index, boundary_prob in \ enumerate(boundary_probability_matrix[vertex]): labels = boundary_matrix_keys[index] for label in labels: # if label in used_labels: # continue if label not in label_likelihoods: label_likelihoods[label] = 0 label_likelihoods[label] += boundary_prob # assign the most likely label max_label = None max_label_likelihood = None for key, val in label_likelihoods.iteritems(): if max_label is None or val > max_label_likelihood: max_label = key max_label_likelihood = val if max_label is not None: result_labels[components[component]] = max_label used_labels.append(max_label) return result_labels
def realign_boundaries_to_fundus_lines( surf_file, init_label_file, fundus_lines_file, thickness_file, out_label_file=None): """ Fix label boundaries to fundus lines. Parameters ---------- surf_file : file containing the surface geometry in vtk format init_label_file : file containing scalars that represent the initial guess at labels fundus_lines_file : file containing scalars representing fundus lines. thickness_file: file containing cortical thickness scalar data (for masking out the medial wall only) out_label_file : if specified, the realigned labels will be writen to this file Returns ------- numpy array representing the realigned label for each surface vertex. """ import numpy as np from mindboggle.utils.segment import extract_borders import mindboggle.utils.graph as go from mindboggle.utils.io_vtk import read_vtk, read_scalars, write_vtk from mindboggle.utils.mesh import find_neighbors import propagate_fundus_lines ## read files faces, _, indices, points, num_points, _, _, _ = read_vtk( surf_file, return_first=True, return_array=True) indices = range(num_points) init_labels, _ = read_scalars(init_label_file, return_first=True, return_array=True) fundus_lines, _ = read_scalars(fundus_lines_file, return_first=True, return_array=True) thickness, _ = read_scalars(thickness_file, return_first=True, return_array=True) # remove labels from vertices with zero thickness (get around # DKT40 annotations having the label '3' for all the Corpus # Callosum vertices). cc_inds = [x for x in indices if thickness[x] < 0.001] init_labels[cc_inds] = 0 ## setup seeds from initial label boundaries neighbor_lists = find_neighbors(faces, num_points) # extract all vertices that are on a boundary between labels boundary_indices, label_pairs, _ = extract_borders( indices, init_labels, neighbor_lists, return_label_pairs=True) # split boundary vertices into segments with common boundary pairs. boundary_segments = {} for boundary_index, label_pair in zip(boundary_indices, label_pairs): key = ((label_pair[0], label_pair[1]) if label_pair[0] < label_pair[1] else (label_pair[1], label_pair[0])) if key not in boundary_segments: boundary_segments[key] = [] boundary_segments[key].append(boundary_index) boundary_matrix, boundary_matrix_keys = _build_boundary_matrix( boundary_segments, num_points) # build the affinity matrix affinity_matrix = go.weight_graph( np.array(points), indices, np.array(faces), sigma=10, add_to_graph=False) ## propagate boundaries to fundus line vertices learned_matrix = _propagate_labels( affinity_matrix, boundary_matrix, boundary_indices, 100, 1) # assign labels to fundus line vertices based on highest probability new_boundaries = -1 * np.ones(init_labels.shape) fundus_line_indices = [i for i, x in enumerate(fundus_lines) if x > 0.5] # tile the surface into connected components delimited by fundus lines closed_fundus_lines, _, _ = propagate_fundus_lines.propagate_fundus_lines( points, faces, fundus_line_indices, thickness) closed_fundus_line_indices = np.where(closed_fundus_lines > 0)[0] # split surface into connected components connected_component_faces = _remove_boundary_faces( points, faces, closed_fundus_line_indices) # label components based on most probable label assignment new_labels = _label_components( connected_component_faces, num_points, boundary_indices, learned_matrix, boundary_matrix_keys) # propagate new labels to fill holes label_matrix, label_map = _build_label_matrix(new_labels) new_learned_matrix = _propagate_labels( affinity_matrix, label_matrix, [i for i in range(num_points) if new_labels[i] >= 0], 100, 1) # assign most probable labels for idx in [i for i in range(num_points) if new_labels[i] == -1]: max_idx = np.argmax(new_learned_matrix[idx]) new_labels[idx] = label_map[max_idx] # save if out_label_file is not None: write_vtk(out_label_file, points, faces=faces, scalars=[int(x) for x in new_labels], scalar_type='int') return new_labels
def extract_subfolds(depth_file, folds, min_size=10, depth_factor=0.25, depth_ratio=0.1, tolerance=0.01, save_file=False): """ Use depth to segment folds into subfolds in a triangular surface mesh. Note :: The function extract_sulci() performs about the same whether folds or subfolds are used as input. The latter leads to some loss of small subfolds and possibly holes for small subfolds in the middle of other subfolds. Note about the watershed() function: The watershed() function performs individual seed growing from deep seeds, repeats segmentation from the resulting seeds until each seed's segment touches a boundary. The function segment() fills in the rest. Finally segments are joined if their seeds are too close to each other. Despite these precautions, the order of seed selection in segment() could possibly influence the resulting borders between adjoining segments. [The propagate() function is slower and insensitive to depth, but is not biased by seed order.] Parameters ---------- depth_file : string surface mesh file in VTK format with faces and depth scalar values folds : list of integers fold numbers for all vertices (-1 for non-fold vertices) min_size : integer minimum number of vertices for a subfold depth_factor : float watershed() depth_factor: factor to determine whether to merge two neighboring watershed catchment basins -- they are merged if the Euclidean distance between their basin seeds is less than this fraction of the maximum Euclidean distance between points having minimum and maximum depths depth_ratio : float watershed() depth_ratio: the minimum fraction of depth for a neighboring shallower watershed catchment basin (otherwise merged with the deeper basin) tolerance : float watershed() tolerance: tolerance for detecting differences in depth between vertices save_file : Boolean save output VTK file? Returns ------- subfolds : list of integers fold numbers for all vertices (-1 for non-fold vertices) n_subfolds : int number of subfolds subfolds_file : string (if save_file) name of output VTK file with fold IDs (-1 for non-fold vertices) Examples -------- >>> import os >>> from mindboggle.utils.io_vtk import read_scalars, rewrite_scalars >>> from mindboggle.utils.mesh import find_neighbors_from_file >>> from mindboggle.features.folds import extract_subfolds >>> from mindboggle.utils.plots import plot_vtk >>> path = os.environ['MINDBOGGLE_DATA'] >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk') >>> folds_file = os.path.join(path, 'arno', 'features', 'folds.vtk') >>> folds, name = read_scalars(folds_file) >>> min_size = 10 >>> depth_factor = 0.5 >>> depth_ratio = 0.1 >>> tolerance = 0.01 >>> # >>> subfolds, n_subfolds, subfolds_file = extract_subfolds(depth_file, >>> folds, min_size, depth_factor, depth_ratio, tolerance, True) >>> # >>> # View: >>> rewrite_scalars(depth_file, 'subfolds.vtk', subfolds, 'subfolds', subfolds) >>> plot_vtk('subfolds.vtk') """ import os import numpy as np from time import time from mindboggle.utils.io_vtk import rewrite_scalars, read_vtk from mindboggle.utils.mesh import find_neighbors from mindboggle.utils.segment import segment, propagate, watershed print("Segment folds into subfolds") t0 = time() #------------------------------------------------------------------------- # Load depth values for all vertices #------------------------------------------------------------------------- faces, lines, indices, points, npoints, depths, \ name, input_vtk = read_vtk(depth_file, return_first=True, return_array=True) #------------------------------------------------------------------------- # Find neighbors for each vertex #------------------------------------------------------------------------- neighbor_lists = find_neighbors(faces, npoints) #------------------------------------------------------------------------- # Segment folds into "watershed basins" #------------------------------------------------------------------------- indices_folds = [i for i,x in enumerate(folds) if x > -1] subfolds, seed_indices = watershed(depths, points, indices_folds, neighbor_lists, min_size, depth_factor=0.25, depth_ratio=0.1, tolerance=0.01, regrow=True) # Print statement n_subfolds = len([x for x in np.unique(subfolds) if x != -1]) print(' ...Extracted {0} subfolds ({1:.2f} seconds)'. format(n_subfolds, time() - t0)) #------------------------------------------------------------------------- # Return subfolds, number of subfolds, file name #------------------------------------------------------------------------- if save_file: subfolds_file = os.path.join(os.getcwd(), 'subfolds.vtk') rewrite_scalars(depth_file, subfolds_file, subfolds, 'subfolds', subfolds) if not os.path.exists(subfolds_file): raise(IOError(subfolds_file + " not found")) else: subfolds_file = None return subfolds, n_subfolds, subfolds_file
def extract_folds(depth_file, min_fold_size=50, tiny_depth=0.001, save_file=False): """ Use depth to extract folds from a triangular surface mesh. Steps :: 1. Compute histogram of depth measures. 2. Define a depth threshold and find the deepest vertices. 3. Segment deep vertices as an initial set of folds. 4. Remove small folds. 5. Find and fill holes in the folds. 6. Renumber folds. Step 2 :: To extract an initial set of deep vertices from the surface mesh, we anticipate that there will be a rapidly decreasing distribution of low depth values (on the outer surface) with a long tail of higher depth values (in the folds), so we smooth the histogram's bin values, convolve to compute slopes, and find the depth value for the first bin with slope = 0. This is our threshold. Step 5 :: The folds could have holes in areas shallower than the depth threshold. Calling fill_holes() could accidentally include very shallow areas (in an annulus-shaped fold, for example), so we call fill_holes() with the argument exclude_range set close to zero to retain these areas. Parameters ---------- depth_file : string surface mesh file in VTK format with faces and depth scalar values min_fold_size : integer minimum fold size (number of vertices) tiny_depth : float largest non-zero depth value that will stop a hole from being filled save_file : Boolean save output VTK file? Returns ------- folds : list of integers fold numbers for all vertices (-1 for non-fold vertices) n_folds : int number of folds depth_threshold : float threshold defining the minimum depth for vertices to be in a fold bins : list of integers histogram bins: each is the number of vertices within a range of depth values bin_edges : list of floats histogram bin edge values defining the bin ranges of depth values folds_file : string (if save_file) name of output VTK file with fold IDs (-1 for non-fold vertices) Examples -------- >>> import os >>> import numpy as np >>> import pylab >>> from scipy.ndimage.filters import gaussian_filter1d >>> from mindboggle.utils.io_vtk import read_scalars >>> from mindboggle.utils.mesh import find_neighbors_from_file >>> from mindboggle.utils.plots import plot_surfaces >>> from mindboggle.features.folds import extract_folds >>> path = os.environ['MINDBOGGLE_DATA'] >>> depth_file = os.path.join(path, 'arno', 'shapes', 'lh.pial.travel_depth.vtk') >>> neighbor_lists = find_neighbors_from_file(depth_file) >>> min_fold_size = 50 >>> tiny_depth = 0.001 >>> save_file = True >>> # >>> folds, n_folds, thr, bins, bin_edges, folds_file = extract_folds(depth_file, >>> min_fold_size, tiny_depth, save_file) >>> # >>> # View folds: >>> plot_surfaces('folds.vtk') >>> # Plot histogram and depth threshold: >>> depths, name = read_scalars(depth_file) >>> nbins = np.round(len(depths) / 100.0) >>> a,b,c = pylab.hist(depths, bins=nbins) >>> pylab.plot(thr*np.ones((100,1)), np.linspace(0, max(bins), 100), 'r.') >>> pylab.show() >>> # Plot smoothed histogram: >>> bins_smooth = gaussian_filter1d(bins.tolist(), 5) >>> pylab.plot(range(len(bins)), bins, '.', range(len(bins)), bins_smooth,'-') >>> pylab.show() """ import os import sys import numpy as np from time import time from scipy.ndimage.filters import gaussian_filter1d from mindboggle.utils.io_vtk import rewrite_scalars, read_vtk from mindboggle.utils.mesh import find_neighbors from mindboggle.utils.morph import fill_holes from mindboggle.utils.segment import segment do_fill_holes = True print("Extract folds in surface mesh") t0 = time() #------------------------------------------------------------------------- # Load depth values for all vertices #------------------------------------------------------------------------- faces, lines, indices, points, npoints, depths, name, input_vtk = read_vtk( depth_file, return_first=True, return_array=True) #------------------------------------------------------------------------- # Find neighbors for each vertex #------------------------------------------------------------------------- neighbor_lists = find_neighbors(faces, npoints) #------------------------------------------------------------------------- # Compute histogram of depth measures #------------------------------------------------------------------------- min_vertices = 10000 if npoints > min_vertices: nbins = np.round(npoints / 100.0) else: sys.err(" Expecting at least {0} vertices to create depth histogram". format(min_vertices)) bins, bin_edges = np.histogram(depths, bins=nbins) #------------------------------------------------------------------------- # Anticipating that there will be a rapidly decreasing distribution # of low depth values (on the outer surface) with a long tail of higher # depth values (in the folds), smooth the bin values (Gaussian), convolve # to compute slopes, and find the depth for the first bin with slope = 0. #------------------------------------------------------------------------- bins_smooth = gaussian_filter1d(bins.tolist(), 5) window = [-1, 0, 1] bin_slopes = np.convolve(bins_smooth, window, mode='same') / (len(window) - 1) ibins0 = np.where(bin_slopes == 0)[0] if ibins0.shape: depth_threshold = bin_edges[ibins0[0]] else: depth_threshold = np.median(depths) #------------------------------------------------------------------------- # Find the deepest vertices #------------------------------------------------------------------------- indices_deep = [i for i, x in enumerate(depths) if x >= depth_threshold] if indices_deep: #--------------------------------------------------------------------- # Segment deep vertices as an initial set of folds #--------------------------------------------------------------------- print(" Segment vertices deeper than {0:.2f} as folds".format( depth_threshold)) t1 = time() folds = segment(indices_deep, neighbor_lists) # Slightly slower alternative -- fill boundaries: #regions = -1 * np.ones(len(points)) #regions[indices_deep] = 1 #folds = segment_by_filling_borders(regions, neighbor_lists) print(' ...Segmented folds ({0:.2f} seconds)'.format(time() - t1)) #--------------------------------------------------------------------- # Remove small folds #--------------------------------------------------------------------- if min_fold_size > 1: print(' Remove folds smaller than {0}'.format(min_fold_size)) unique_folds = [x for x in np.unique(folds) if x != -1] for nfold in unique_folds: indices_fold = [i for i, x in enumerate(folds) if x == nfold] if len(indices_fold) < min_fold_size: folds[indices_fold] = -1 #--------------------------------------------------------------------- # Find and fill holes in the folds # Note: Surfaces surrounded by folds can be mistaken for holes, # so exclude_range includes outer surface values close to zero. #--------------------------------------------------------------------- if do_fill_holes: print(" Find and fill holes in the folds") folds = fill_holes(folds, neighbor_lists, values=depths, exclude_range=[0, tiny_depth]) #--------------------------------------------------------------------- # Renumber folds so they are sequential #--------------------------------------------------------------------- renumber_folds = -1 * np.ones(len(folds)) fold_numbers = [int(x) for x in np.unique(folds) if x != -1] for i_fold, n_fold in enumerate(fold_numbers): fold = [i for i, x in enumerate(folds) if x == n_fold] renumber_folds[fold] = i_fold folds = renumber_folds n_folds = i_fold + 1 # Print statement print(' ...Extracted {0} folds ({1:.2f} seconds)'.format( n_folds, time() - t0)) else: print(' No deep vertices') folds = [int(x) for x in folds] #------------------------------------------------------------------------- # Return folds, number of folds, file name #------------------------------------------------------------------------- if save_file: folds_file = os.path.join(os.getcwd(), 'folds.vtk') rewrite_scalars(depth_file, folds_file, folds, 'folds', folds) if not os.path.exists(folds_file): raise (IOError(folds_file + " not found")) else: folds_file = None return folds, n_folds, depth_threshold, bins, bin_edges, folds_file