Пример #1
0
def test_auto_contrast_invalid_ignore_param_c():
    """
    Test AutoContrast C Op with invalid ignore parameter
    """
    logger.info("Test AutoContrast C Op with invalid ignore parameter")
    try:
        ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
        ds = ds.map(input_columns=["image"],
                    operations=[
                        C.Decode(),
                        C.Resize((224, 224)),
                        lambda img: np.array(img[:, :, 0])
                    ])
        # invalid ignore
        ds = ds.map(input_columns="image",
                    operations=C.AutoContrast(ignore=255.5))
    except TypeError as error:
        logger.info("Got an exception in DE: {}".format(str(error)))
        assert "Argument ignore with value 255.5 is not of type" in str(error)
    try:
        ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
        ds = ds.map(input_columns=["image"],
                    operations=[
                        C.Decode(),
                        C.Resize((224, 224)),
                        lambda img: np.array(img[:, :, 0])
                    ])
        # invalid ignore
        ds = ds.map(input_columns="image",
                    operations=C.AutoContrast(ignore=(10, 100)))
    except TypeError as error:
        logger.info("Got an exception in DE: {}".format(str(error)))
        assert "Argument ignore with value (10,100) is not of type" in str(
            error)
Пример #2
0
def test_auto_contrast_invalid_cutoff_param_c():
    """
    Test AutoContrast C Op with invalid cutoff parameter
    """
    logger.info("Test AutoContrast C Op with invalid cutoff parameter")
    try:
        ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
        ds = ds.map(input_columns=["image"],
                    operations=[
                        C.Decode(),
                        C.Resize((224, 224)),
                        lambda img: np.array(img[:, :, 0])
                    ])
        # invalid ignore
        ds = ds.map(input_columns="image",
                    operations=C.AutoContrast(cutoff=-10.0))
    except ValueError as error:
        logger.info("Got an exception in DE: {}".format(str(error)))
        assert "Input cutoff is not within the required interval of (0 to 100)." in str(
            error)
    try:
        ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
        ds = ds.map(input_columns=["image"],
                    operations=[
                        C.Decode(),
                        C.Resize((224, 224)),
                        lambda img: np.array(img[:, :, 0])
                    ])
        # invalid ignore
        ds = ds.map(input_columns="image",
                    operations=C.AutoContrast(cutoff=120.0))
    except ValueError as error:
        logger.info("Got an exception in DE: {}".format(str(error)))
        assert "Input cutoff is not within the required interval of (0 to 100)." in str(
            error)
Пример #3
0
def test_auto_contrast_mnist_c(plot=False):
    """
    Test AutoContrast C op with MNIST dataset (Grayscale images)
    """
    logger.info("Test AutoContrast C Op With MNIST Images")
    ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR,
                         num_samples=2,
                         shuffle=False)
    ds_auto_contrast_c = ds.map(input_columns="image",
                                operations=C.AutoContrast(cutoff=1,
                                                          ignore=(0, 255)))
    ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR,
                              num_samples=2,
                              shuffle=False)

    images = []
    images_trans = []
    labels = []
    for _, (data_orig,
            data_trans) in enumerate(zip(ds_orig, ds_auto_contrast_c)):
        image_orig, label_orig = data_orig
        image_trans, _ = data_trans
        images.append(image_orig)
        labels.append(label_orig)
        images_trans.append(image_trans)

    # Compare with expected md5 from images
    filename = "autocontrast_mnist_result_c.npz"
    save_and_check_md5(ds_auto_contrast_c,
                       filename,
                       generate_golden=GENERATE_GOLDEN)

    if plot:
        visualize_one_channel_dataset(images, images_trans, labels)
Пример #4
0
def test_auto_contrast_c(plot=False):
    """
    Test AutoContrast C Op
    """
    logger.info("Test AutoContrast C Op")

    # AutoContrast Images
    ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
    ds = ds.map(input_columns=["image"],
                operations=[C.Decode(), C.Resize((224, 224))])
    python_op = F.AutoContrast()
    c_op = C.AutoContrast()
    transforms_op = F.ComposeOp(
        [lambda img: F.ToPIL()(img.astype(np.uint8)), python_op, np.array])()

    ds_auto_contrast_py = ds.map(input_columns="image",
                                 operations=transforms_op)

    ds_auto_contrast_py = ds_auto_contrast_py.batch(512)

    for idx, (image, _) in enumerate(ds_auto_contrast_py):
        if idx == 0:
            images_auto_contrast_py = image
        else:
            images_auto_contrast_py = np.append(images_auto_contrast_py,
                                                image,
                                                axis=0)

    ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
    ds = ds.map(input_columns=["image"],
                operations=[C.Decode(), C.Resize((224, 224))])

    ds_auto_contrast_c = ds.map(input_columns="image", operations=c_op)

    ds_auto_contrast_c = ds_auto_contrast_c.batch(512)

    for idx, (image, _) in enumerate(ds_auto_contrast_c):
        if idx == 0:
            images_auto_contrast_c = image
        else:
            images_auto_contrast_c = np.append(images_auto_contrast_c,
                                               image,
                                               axis=0)

    num_samples = images_auto_contrast_c.shape[0]
    mse = np.zeros(num_samples)
    for i in range(num_samples):
        mse[i] = diff_mse(images_auto_contrast_c[i],
                          images_auto_contrast_py[i])
    logger.info("MSE= {}".format(str(np.mean(mse))))
    np.testing.assert_equal(np.mean(mse), 0.0)

    if plot:
        visualize_list(images_auto_contrast_c,
                       images_auto_contrast_py,
                       visualize_mode=2)
Пример #5
0
def test_auto_contrast_c(plot=False):
    """
    Test AutoContrast C Op
    """
    logger.info("Test AutoContrast C Op")

    # AutoContrast Images
    ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
    ds = ds.map(input_columns=["image"],
                operations=[C.Decode(), C.Resize((224, 224))])
    python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20])
    c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20])
    transforms_op = F.ComposeOp(
        [lambda img: F.ToPIL()(img.astype(np.uint8)), python_op, np.array])()

    ds_auto_contrast_py = ds.map(input_columns="image",
                                 operations=transforms_op)

    ds_auto_contrast_py = ds_auto_contrast_py.batch(512)

    for idx, (image, _) in enumerate(ds_auto_contrast_py):
        if idx == 0:
            images_auto_contrast_py = image
        else:
            images_auto_contrast_py = np.append(images_auto_contrast_py,
                                                image,
                                                axis=0)

    ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
    ds = ds.map(input_columns=["image"],
                operations=[C.Decode(), C.Resize((224, 224))])

    ds_auto_contrast_c = ds.map(input_columns="image", operations=c_op)

    ds_auto_contrast_c = ds_auto_contrast_c.batch(512)

    for idx, (image, _) in enumerate(ds_auto_contrast_c):
        if idx == 0:
            images_auto_contrast_c = image
        else:
            images_auto_contrast_c = np.append(images_auto_contrast_c,
                                               image,
                                               axis=0)

    num_samples = images_auto_contrast_c.shape[0]
    mse = np.zeros(num_samples)
    for i in range(num_samples):
        mse[i] = diff_mse(images_auto_contrast_c[i],
                          images_auto_contrast_py[i])
    logger.info("MSE= {}".format(str(np.mean(mse))))
    np.testing.assert_equal(np.mean(mse), 0.0)

    # Compare with expected md5 from images
    filename = "autocontrast_01_result_c.npz"
    save_and_check_md5(ds_auto_contrast_c,
                       filename,
                       generate_golden=GENERATE_GOLDEN)

    if plot:
        visualize_list(images_auto_contrast_c,
                       images_auto_contrast_py,
                       visualize_mode=2)