Пример #1
0
def test_random_sharpness_py_md5():
    """
    Test RandomSharpness python op with md5 comparison
    """
    logger.info("Test RandomSharpness python op with md5 comparison")
    original_seed = config_get_set_seed(5)
    original_num_parallel_workers = config_get_set_num_parallel_workers(1)

    # define map operations
    transforms = [F.Decode(), F.RandomSharpness((20.0, 25.0)), F.ToTensor()]
    transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)

    #  Generate dataset
    data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
    data = data.map(operations=transform, input_columns=["image"])

    # check results with md5 comparison
    filename = "random_sharpness_py_01_result.npz"
    save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)

    # Restore configuration
    ds.config.set_seed(original_seed)
    ds.config.set_num_parallel_workers(original_num_parallel_workers)
Пример #2
0
def test_uniform_augment(plot=False, num_ops=2):
    """
    Test UniformAugment
    """
    logger.info("Test UniformAugment")

    # Original Images
    data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)

    transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
                                                                              F.Resize((224, 224)),
                                                                              F.ToTensor()])

    ds_original = data_set.map(operations=transforms_original, input_columns="image")

    ds_original = ds_original.batch(512)

    for idx, (image, _) in enumerate(ds_original):
        if idx == 0:
            images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
        else:
            images_original = np.append(images_original,
                                        np.transpose(image.asnumpy(), (0, 2, 3, 1)),
                                        axis=0)

            # UniformAugment Images
    data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)

    transform_list = [F.RandomRotation(45),
                      F.RandomColor(),
                      F.RandomSharpness(),
                      F.Invert(),
                      F.AutoContrast(),
                      F.Equalize()]

    transforms_ua = \
        mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
                                                            F.Resize((224, 224)),
                                                            F.UniformAugment(transforms=transform_list,
                                                                             num_ops=num_ops),
                                                            F.ToTensor()])

    ds_ua = data_set.map(operations=transforms_ua, input_columns="image")

    ds_ua = ds_ua.batch(512)

    for idx, (image, _) in enumerate(ds_ua):
        if idx == 0:
            images_ua = np.transpose(image.asnumpy(), (0, 2, 3, 1))
        else:
            images_ua = np.append(images_ua,
                                  np.transpose(image.asnumpy(), (0, 2, 3, 1)),
                                  axis=0)

    num_samples = images_original.shape[0]
    mse = np.zeros(num_samples)
    for i in range(num_samples):
        mse[i] = diff_mse(images_ua[i], images_original[i])
    logger.info("MSE= {}".format(str(np.mean(mse))))

    if plot:
        visualize_list(images_original, images_ua)
Пример #3
0
def test_random_sharpness_py(degrees=(0.7, 0.7), plot=False):
    """
    Test RandomSharpness python op
    """
    logger.info("Test RandomSharpness python op")

    # Original Images
    data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)

    transforms_original = mindspore.dataset.transforms.py_transforms.Compose(
        [F.Decode(), F.Resize((224, 224)),
         F.ToTensor()])

    ds_original = data.map(operations=transforms_original,
                           input_columns="image")

    ds_original = ds_original.batch(512)

    for idx, (image, _) in enumerate(
            ds_original.create_tuple_iterator(output_numpy=True)):
        if idx == 0:
            images_original = np.transpose(image, (0, 2, 3, 1))
        else:
            images_original = np.append(images_original,
                                        np.transpose(image, (0, 2, 3, 1)),
                                        axis=0)

    # Random Sharpness Adjusted Images
    data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)

    py_op = F.RandomSharpness()
    if degrees is not None:
        py_op = F.RandomSharpness(degrees)

    transforms_random_sharpness = mindspore.dataset.transforms.py_transforms.Compose(
        [F.Decode(), F.Resize((224, 224)), py_op,
         F.ToTensor()])

    ds_random_sharpness = data.map(operations=transforms_random_sharpness,
                                   input_columns="image")

    ds_random_sharpness = ds_random_sharpness.batch(512)

    for idx, (image, _) in enumerate(
            ds_random_sharpness.create_tuple_iterator(output_numpy=True)):
        if idx == 0:
            images_random_sharpness = np.transpose(image, (0, 2, 3, 1))
        else:
            images_random_sharpness = np.append(images_random_sharpness,
                                                np.transpose(
                                                    image, (0, 2, 3, 1)),
                                                axis=0)

    num_samples = images_original.shape[0]
    mse = np.zeros(num_samples)
    for i in range(num_samples):
        mse[i] = diff_mse(images_random_sharpness[i], images_original[i])

    logger.info("MSE= {}".format(str(np.mean(mse))))

    if plot:
        visualize_list(images_original, images_random_sharpness)
Пример #4
0
def test_random_sharpness_c_py(degrees=(1.0, 1.0), plot=False):
    """
    Test Random Sharpness C and python Op
    """
    logger.info("Test RandomSharpness C and python Op")

    # RandomSharpness Images
    data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
    data = data.map(operations=[C.Decode(), C.Resize((200, 300))],
                    input_columns=["image"])

    python_op = F.RandomSharpness(degrees)
    c_op = C.RandomSharpness(degrees)

    transforms_op = mindspore.dataset.transforms.py_transforms.Compose(
        [lambda img: F.ToPIL()(img.astype(np.uint8)), python_op, np.array])

    ds_random_sharpness_py = data.map(operations=transforms_op,
                                      input_columns="image")

    ds_random_sharpness_py = ds_random_sharpness_py.batch(512)

    for idx, (image, _) in enumerate(
            ds_random_sharpness_py.create_tuple_iterator(output_numpy=True)):
        if idx == 0:
            images_random_sharpness_py = image

        else:
            images_random_sharpness_py = np.append(images_random_sharpness_py,
                                                   image,
                                                   axis=0)

    data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
    data = data.map(operations=[C.Decode(), C.Resize((200, 300))],
                    input_columns=["image"])

    ds_images_random_sharpness_c = data.map(operations=c_op,
                                            input_columns="image")

    ds_images_random_sharpness_c = ds_images_random_sharpness_c.batch(512)

    for idx, (image, _) in enumerate(
            ds_images_random_sharpness_c.create_tuple_iterator(
                output_numpy=True)):
        if idx == 0:
            images_random_sharpness_c = image

        else:
            images_random_sharpness_c = np.append(images_random_sharpness_c,
                                                  image,
                                                  axis=0)

    num_samples = images_random_sharpness_c.shape[0]
    mse = np.zeros(num_samples)
    for i in range(num_samples):
        mse[i] = diff_mse(images_random_sharpness_c[i],
                          images_random_sharpness_py[i])
    logger.info("MSE= {}".format(str(np.mean(mse))))
    if plot:
        visualize_list(images_random_sharpness_c,
                       images_random_sharpness_py,
                       visualize_mode=2)