def __init__(self, block, layer_num, num_classes=100): super(ResNet, self).__init__() self.conv1 = conv7x7(3, 64, stride=2, padding=3) self.bn1 = bn_with_initialize(64) self.relu = P.ReLU() self.maxpool = MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.layer1 = MakeLayer0(block, layer_num[0], in_channels=64, out_channels=256, stride=1) self.layer2 = MakeLayer1(block, layer_num[1], in_channels=256, out_channels=512, stride=2) self.layer3 = MakeLayer2(block, layer_num[2], in_channels=512, out_channels=1024, stride=2) self.layer4 = MakeLayer3(block, layer_num[3], in_channels=1024, out_channels=2048, stride=2) self.pool = nn.AvgPool2d(7, 1) self.fc = fc_with_initialize(512 * block.expansion, num_classes) self.flatten = Flatten()
def __init__(self, block, num_classes=100): super(ResNetModelParallel, self).__init__() self.relu = P.ReLU().shard(((1, dev_num, 1, 1),)) self.maxpool = MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.layer1 = MakeLayer0( block, in_channels=64, out_channels=256, stride=1) self.pool = M.ReduceMean(keep_dims=True).shard(strategy_no_weight) self.fc = fc_with_initialize(64 * block.expansion, num_classes) self.flatten = Flatten()
def __init__(self, num_classes=100): super(ResNet, self).__init__() strategy_no_weight = ((dev_num, 1, 1, 1),) self.conv1 = conv7x7(3, 64, stride=2, padding=0) self.bn1 = bn_with_initialize(64) self.relu = ReLU() self.relu.relu.shard(strategy_no_weight) self.maxpool = MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.reshape = P.Reshape() self.matmul = P.MatMul().shard(((8, 1), (1, 1))) self.matmul_weight = Parameter(Tensor(np.ones([200704, num_classes]), dtype=ms.float32), name="weight")
def __init__(self, block, num_classes=100): super(ResNet, self).__init__() self.conv1 = conv7x7(3, 64, stride=2) self.bn1 = bn_with_initialize(64) self.relu = P.ReLU().set_strategy(strategy_no_weight) self.maxpool = MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1) self.pool = M.ReduceMean( keep_dims=True).set_strategy(strategy_no_weight) self.fc = fc_with_initialize(64 * block.expansion, num_classes) self.flatten = Flatten()