'block': PReLUNet(), 'desc_inputs': [Tensor(np.ones([1, 3, 4, 4], np.float32))], }), ('PReLUGradNet', { 'block': PReLUGradNet(), 'desc_inputs': [Tensor(np.ones([1, 3, 4, 4], np.float32)), Tensor(np.ones([1, 3, 4, 4], np.float32)), Tensor(np.ones(3, np.float32))], }), ('MatrixDiag', { 'block': nn.MatrixDiag(), 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))], 'skip': ['backward'] }), ('MatrixDiagPart', { 'block': nn.MatrixDiagPart(), 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32))], 'skip': ['backward'] }), ('MatrixSetDiag', { 'block': nn.MatrixSetDiag(), 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)), Tensor(np.array([1, 2]).astype(np.float32))], 'skip': ['backward'] }), ('LRNNet', { 'block': LRNNet(), 'desc_inputs': [Tensor(np.ones([1, 5, 4, 4], np.float32))], }), ('LRNGradNet', { 'block': LRNGradNet(),
'block': PReLUGradNet(), 'desc_inputs': [ Tensor(np.ones([1, 3, 4, 4], np.float32)), Tensor(np.ones([1, 3, 4, 4], np.float32)), Tensor(np.ones(3, np.float32)) ], }), ('MatrixDiag', { 'block': nn.MatrixDiag(), 'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.float32))], 'skip': ['backward'] }), ('MatrixDiagPart', { 'block': nn.MatrixDiagPart(), 'desc_inputs': [Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32))], 'skip': ['backward'] }), ('MatrixSetDiag', { 'block': nn.MatrixSetDiag(), 'desc_inputs': [ Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)), Tensor(np.array([1, 2]).astype(np.float32)) ], 'skip': ['backward'] }), ('LRNNet', { 'block': LRNNet(),