Пример #1
0
def test_asfarray():
    test_case = Cases()
    for array in test_case.array_sets:
        # Check for dtype matching
        actual = onp.asfarray(array)
        expected = mnp.asfarray(array).asnumpy()
        # Since we set float32/int32 as the default dtype in mindspore, we need
        # to make a conversion between numpy.asarray and mindspore.numpy.asarray
        if actual.dtype is onp.dtype('float64'):
            assert expected.dtype == onp.dtype('float32')
        else:
            assert actual.dtype == expected.dtype
        match_array(actual, expected, error=7)

        for i in range(len(test_case.onp_dtypes)):
            actual = onp.asfarray(array, test_case.onp_dtypes[i])
            expected = mnp.asfarray(array, test_case.mnp_dtypes[i]).asnumpy()
            match_array(actual, expected, error=7)

    # Additional tests for nested tensor/numpy_array mixture
    mnp_input = [(mnp.ones(3, ), mnp.ones(3)), [[1, 1, 1], (1, 1, 1)]]
    onp_input = [(onp.ones(3, ), onp.ones(3)), [[1, 1, 1], (1, 1, 1)]]

    actual = onp.asfarray(onp_input)
    expected = mnp.asfarray(mnp_input).asnumpy()
    match_array(actual, expected, error=7)
Пример #2
0
def test_asfarray():
    test_case = Cases()
    for array in test_case.array_sets:
        # Check for dtype matching
        actual = onp.asfarray(array)
        expected = mnp.asfarray(array).asnumpy()
        # Since we set float32/int32 as the default dtype in mindspore, we need
        # to make a conversion between numpy.asarray and mindspore.numpy.asarray
        if actual.dtype is onp.dtype('float64'):
            assert expected.dtype == onp.dtype('float32')
        else:
            assert actual.dtype == expected.dtype
        match_array(actual, expected, error=7)

        for i in range(len(test_case.onp_dtypes)):
            actual = onp.asfarray(array, test_case.onp_dtypes[i])
            expected = mnp.asfarray(array, test_case.mnp_dtypes[i]).asnumpy()
            match_array(actual, expected, error=7)