def __init__(self):
     super(NetArgmaxWithValue, self).__init__()
     axis1 = 0
     axis2 = -1
     self.argmax1 = P.ArgMaxWithValue(axis1)
     self.argmax2 = P.ArgMaxWithValue(axis2)
     self.argmax3 = P.ArgMaxWithValue()
Пример #2
0
    def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals):
        super(BboxAssignSample, self).__init__()
        cfg = config
        self.batch_size = batch_size

        self.neg_iou_thr = Tensor(cfg.neg_iou_thr, mstype.float16)
        self.pos_iou_thr = Tensor(cfg.pos_iou_thr, mstype.float16)
        self.min_pos_iou = Tensor(cfg.min_pos_iou, mstype.float16)
        self.zero_thr = Tensor(0.0, mstype.float16)

        self.num_bboxes = num_bboxes
        self.num_gts = cfg.num_gts
        self.num_expected_pos = cfg.num_expected_pos
        self.num_expected_neg = cfg.num_expected_neg
        self.add_gt_as_proposals = add_gt_as_proposals

        if self.add_gt_as_proposals:
            self.label_inds = Tensor(np.arange(1, self.num_gts + 1))

        self.concat = P.Concat(axis=0)
        self.max_gt = P.ArgMaxWithValue(axis=0)
        self.max_anchor = P.ArgMaxWithValue(axis=1)
        self.sum_inds = P.ReduceSum()
        self.iou = P.IOU()
        self.greaterequal = P.GreaterEqual()
        self.greater = P.Greater()
        self.select = P.Select()
        self.gatherND = P.GatherNd()
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()
        self.logicaland = P.LogicalAnd()
        self.less = P.Less()
        self.random_choice_with_mask_pos = P.RandomChoiceWithMask(self.num_expected_pos)
        self.random_choice_with_mask_neg = P.RandomChoiceWithMask(self.num_expected_neg)
        self.reshape = P.Reshape()
        self.equal = P.Equal()
        self.bounding_box_encode = BoundingBoxEncode()
        self.scatterNdUpdate = P.ScatterNdUpdate()
        self.scatterNd = P.ScatterNd()
        self.logicalnot = P.LogicalNot()
        self.tile = P.Tile()
        self.zeros_like = P.ZerosLike()

        self.assigned_gt_inds = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_zeros = Tensor(np.array(np.zeros(num_bboxes), dtype=np.int32))
        self.assigned_gt_ones = Tensor(np.array(np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_ignores = Tensor(np.array(-1 * np.ones(num_bboxes), dtype=np.int32))
        self.assigned_pos_ones = Tensor(np.array(np.ones(self.num_expected_pos), dtype=np.int32))

        self.check_neg_mask = Tensor(np.array(np.ones(self.num_expected_neg - self.num_expected_pos), dtype=np.bool))
        self.range_pos_size = Tensor(np.arange(self.num_expected_pos).astype(np.float16))
        self.check_gt_one = Tensor(np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16))
        self.check_anchor_two = Tensor(np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16))
        self.print = P.Print()
Пример #3
0
    def __init__(self, tag_to_index, batch_size=1, seq_length=128, is_training=True):

        super(CRF, self).__init__()
        self.target_size = len(tag_to_index)
        self.is_training = is_training
        self.tag_to_index = tag_to_index
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.START_TAG = "<START>"
        self.STOP_TAG = "<STOP>"
        self.START_VALUE = Tensor(self.target_size-2, dtype=mstype.int32)
        self.STOP_VALUE = Tensor(self.target_size-1, dtype=mstype.int32)
        transitions = np.random.normal(size=(self.target_size, self.target_size)).astype(np.float32)
        transitions[tag_to_index[self.START_TAG], :] = -10000
        transitions[:, tag_to_index[self.STOP_TAG]] = -10000
        self.transitions = Parameter(Tensor(transitions), name="transition_matrix")
        self.cat = P.Concat(axis=-1)
        self.argmax = P.ArgMaxWithValue(axis=-1)
        self.log = P.Log()
        self.exp = P.Exp()
        self.sum = P.ReduceSum()
        self.tile = P.Tile()
        self.reduce_sum = P.ReduceSum(keep_dims=True)
        self.reshape = P.Reshape()
        self.expand = P.ExpandDims()
        self.mean = P.ReduceMean()
        init_alphas = np.ones(shape=(self.batch_size, self.target_size)) * -10000.0
        init_alphas[:, self.tag_to_index[self.START_TAG]] = 0.
        self.init_alphas = Tensor(init_alphas, dtype=mstype.float32)
        self.cast = P.Cast()
        self.reduce_max = P.ReduceMax(keep_dims=True)
        self.on_value = Tensor(1.0, dtype=mstype.float32)
        self.off_value = Tensor(0.0, dtype=mstype.float32)
        self.onehot = P.OneHot()
 def __init__(self, backbone, generate=False):
     super(EvalNet, self).__init__(auto_prefix=False)
     self.backbone = backbone
     self.argmax = P.ArgMaxWithValue()
     self.generate = generate
     self.topk = P.TopK(sorted=True).shard(((1, 1),))
     self.log_softmax = P.Softmax(axis=-1)
    def __init__(self, config):
        super(CrossEntropyLoss, self).__init__()
        self.mean = P.ReduceMean()
        self.sum = P.ReduceSum().shard(((config.dp, config.mp),))
        self.onehot = P.OneHot().shard(((config.dp, config.mp), (), ()))
        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.vocab_size = config.vocab_size
        self.max = P.ArgMaxWithValue(axis=-1, keep_dims=True).shard(
            ((config.dp, config.mp),))
        self.eps_const = Tensor(1e-24, mstype.float32)
        self.sub = P.Sub().shard(((config.dp, config.mp), (config.dp, 1)))
        self.exp = P.Exp().shard(((config.dp, config.mp),))
        self.div = P.RealDiv().shard(((config.dp, config.mp), (config.dp, 1)))
        self.log = P.Log().shard(((config.dp, config.mp),))
        self.add = P.TensorAdd().shard(((config.dp, config.mp), ()))
        self.mul = P.Mul().shard(
            ((config.dp, config.mp), (config.dp, config.mp)))
        self.neg = P.Neg().shard(((config.dp, config.mp),))
        self.sum2 = P.ReduceSum().shard(((1,),))

        self.mul2 = P.Mul().shard(((1,), (1,)))
        self.add2 = P.TensorAdd()
        self.div2 = P.RealDiv()
        if config.stage_num > 1:
            self.div2.add_prim_attr("end", 0)
Пример #6
0
 def __init__(self, network):
     super(GRUInferCell, self).__init__(auto_prefix=False)
     self.network = network
     self.argmax = P.ArgMaxWithValue(axis=2)
     self.transpose = P.Transpose()
     self.teacher_force = Tensor(np.zeros((config.eval_batch_size)),
                                 mstype.bool_)
Пример #7
0
    def __init__(self,
                 probs=None,
                 seed=None,
                 dtype=mstype.int32,
                 name="Categorical"):
        param = dict(locals())
        param['param_dict'] = {'probs': probs}
        valid_dtype = mstype.uint_type + mstype.int_type + mstype.float_type
        Validator.check_type_name("dtype", dtype, valid_dtype,
                                  type(self).__name__)
        super(Categorical, self).__init__(seed, dtype, name, param)

        self._probs = self._add_parameter(probs, 'probs')
        if self.probs is not None:
            check_rank(self.probs)
            check_prob(self.probs)
            check_sum_equal_one(probs)

            # update is_scalar_batch and broadcast_shape
            # drop one dimension
            if self.probs.shape[:-1] == ():
                self._is_scalar_batch = True
            self._broadcast_shape = self._broadcast_shape[:-1]

        self.argmax = P.ArgMaxWithValue(axis=-1)
        self.broadcast = broadcast_to
        self.cast = P.Cast()
        self.clip_by_value = C.clip_by_value
        self.concat = P.Concat(-1)
        self.cumsum = P.CumSum()
        self.dtypeop = P.DType()
        self.exp = exp_generic
        self.expand_dim = P.ExpandDims()
        self.fill = P.Fill()
        self.gather = P.GatherNd()
        self.greater = P.Greater()
        self.issubclass = P.IsSubClass()
        self.less = P.Less()
        self.log = log_generic
        self.log_softmax = P.LogSoftmax()
        self.logicor = P.LogicalOr()
        self.logicand = P.LogicalAnd()
        self.multinomial = P.Multinomial(seed=self.seed)
        self.reshape = P.Reshape()
        self.reduce_sum = P.ReduceSum(keep_dims=True)
        self.select = P.Select()
        self.shape = P.Shape()
        self.softmax = P.Softmax()
        self.squeeze = P.Squeeze()
        self.squeeze_first_axis = P.Squeeze(0)
        self.squeeze_last_axis = P.Squeeze(-1)
        self.square = P.Square()
        self.transpose = P.Transpose()
        self.is_nan = P.IsNan()

        self.index_type = mstype.int32
        self.nan = np.nan
Пример #8
0
 def __init__(self, backbone, config):
     super(WithLossCell, self).__init__(auto_prefix=False)
     self._backbone = backbone
     self.batch_size = config.batch_size
     self.onehot = nn.OneHot(depth=config.ch_vocab_size)
     self._loss_fn = NLLLoss()
     self.max_len = config.max_seq_length
     self.squeeze = P.Squeeze()
     self.cast = P.Cast()
     self.argmax = P.ArgMaxWithValue(axis=1, keep_dims=True)
     self.print = P.Print()
Пример #9
0
 def __init__(self):
     super(openpose_loss, self).__init__()
     self.expand_dims = P.ExpandDims()
     self.tile = P.Tile()
     self.mul = P.Mul()
     self.l2_loss = P.L2Loss()
     self.square = P.Square()
     self.reduceMean = P.ReduceMean()
     self.reduceSum = P.ReduceSum()
     self.print = P.Print()
     self.shape = P.Shape()
     self.maxoftensor = P.ArgMaxWithValue(-1)
Пример #10
0
    def __init__(self, config, is_train=True):
        super(Seq2Seq, self).__init__()
        self.max_len = config.max_seq_length
        self.is_train = is_train

        self.encoder = Encoder(config, is_train)
        self.decoder = Decoder(config, is_train)
        self.expanddims = P.ExpandDims()
        self.squeeze = P.Squeeze(axis=0)
        self.argmax = P.ArgMaxWithValue(axis=int(2), keep_dims=True)
        self.concat = P.Concat(axis=1)
        self.concat2 = P.Concat(axis=0)
        self.select = P.Select()
Пример #11
0
    def __init__(self,
                 config,
                 batch_size,
                 num_classes,
                 target_means=(0., 0., 0., 0.),
                 target_stds=(0.1, 0.1, 0.2, 0.2)):
        super(RcnnCls, self).__init__()
        cfg = config
        self.rcnn_loss_cls_weight = Tensor(
            np.array(cfg.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(
            np.array(cfg.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels
        self.target_means = target_means
        self.target_stds = target_stds
        self.num_classes = num_classes
        self.in_channels = cfg.rcnn_in_channels
        self.train_batch_size = batch_size
        self.test_batch_size = cfg.test_batch_size

        self.fpn_cls = FpnCls(self.in_channels, self.rcnn_fc_out_channels,
                              self.num_classes, cfg.roi_layer["out_size"])
        self.relu = P.ReLU()
        self.logicaland = P.LogicalAnd()
        self.loss_cls = P.SoftmaxCrossEntropyWithLogits()
        self.loss_bbox = P.SmoothL1Loss(beta=1.0)
        self.loss_mask = P.SigmoidCrossEntropyWithLogits()
        self.reshape = P.Reshape()
        self.onehot = P.OneHot()
        self.greater = P.Greater()
        self.cast = P.Cast()
        self.sum_loss = P.ReduceSum()
        self.tile = P.Tile()
        self.expandims = P.ExpandDims()

        self.gather = P.GatherNd()
        self.argmax = P.ArgMaxWithValue(axis=1)

        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.value = Tensor(1.0, mstype.float16)

        self.num_bboxes = (cfg.num_expected_pos_stage2 +
                           cfg.num_expected_neg_stage2) * batch_size

        rmv_first = np.ones((self.num_bboxes, self.num_classes))
        rmv_first[:, 0] = np.zeros((self.num_bboxes, ))
        self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16))

        self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size
Пример #12
0
 def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False):
     super(BertSquad, self).__init__()
     self.bert = BertSquadModel(config, is_training, num_labels, dropout_prob, use_one_hot_embeddings)
     self.loss = CrossEntropyCalculation(is_training)
     self.num_labels = num_labels
     self.seq_length = config.seq_length
     self.is_training = is_training
     self.total_num = Parameter(Tensor([0], mstype.float32))
     self.start_num = Parameter(Tensor([0], mstype.float32))
     self.end_num = Parameter(Tensor([0], mstype.float32))
     self.sum = P.ReduceSum()
     self.equal = P.Equal()
     self.argmax = P.ArgMaxWithValue(axis=1)
     self.squeeze = P.Squeeze(axis=-1)
Пример #13
0
 def __init__(self, config, is_training=True):
     super(Seq2Seq, self).__init__()
     if is_training:
         self.batch_size = config.batch_size
     else:
         self.batch_size = config.eval_batch_size
     self.encoder = Encoder(config, is_training=is_training)
     self.decoder = Decoder(config, is_training=is_training)
     self.expandims = P.ExpandDims()
     self.dropout = nn.Dropout()
     self.shape = P.Shape()
     self.concat = P.Concat(axis=0)
     self.argmax = P.ArgMaxWithValue(axis=1, keep_dims=True)
     self.squeeze = P.Squeeze(axis=0)
     self.sos = Tensor(np.ones((self.batch_size, 1)) * 2, mstype.int32)
     self.select = P.Select()
     self.text_len = config.max_length
Пример #14
0
 def __init__(self,
              temperature=0.07,
              contrast_mode='all',
              base_temperature=0.07):
     super(SupConLoss, self).__init__()
     self.temperature = temperature
     self.contrast_mode = contrast_mode
     self.base_temperature = base_temperature
     self.normalize = P.L2Normalize(axis=2)
     self.eye = P.Eye()
     self.unbind = P.Unstack(axis=1)
     self.cat = P.Concat(axis=0)
     self.matmul = P.MatMul()
     self.div = P.Div()
     self.transpose = P.Transpose()
     self.maxes = P.ArgMaxWithValue(axis=1, keep_dims=True)
     self.tile = P.Tile()
     self.scatter = P.ScatterNd()
     self.oneslike = P.OnesLike()
     self.exp = P.Exp()
     self.sum = P.ReduceSum(keep_dims=True)
     self.log = P.Log()
     self.reshape = P.Reshape()
     self.mean = P.ReduceMean()
Пример #15
0
    def __init__(self, config):
        super(Mask_Rcnn_Resnet50, self).__init__()
        self.train_batch_size = config.batch_size
        self.num_classes = config.num_classes
        self.anchor_scales = config.anchor_scales
        self.anchor_ratios = config.anchor_ratios
        self.anchor_strides = config.anchor_strides
        self.target_means = tuple(config.rcnn_target_means)
        self.target_stds = tuple(config.rcnn_target_stds)

        # Anchor generator
        anchor_base_sizes = None
        self.anchor_base_sizes = list(
            self.anchor_strides) if anchor_base_sizes is None else anchor_base_sizes

        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                AnchorGenerator(anchor_base, self.anchor_scales, self.anchor_ratios))

        self.num_anchors = len(self.anchor_ratios) * len(self.anchor_scales)

        featmap_sizes = config.feature_shapes
        assert len(featmap_sizes) == len(self.anchor_generators)

        self.anchor_list = self.get_anchors(featmap_sizes)

        # Backbone resnet50
        self.backbone = ResNetFea(ResidualBlockUsing,
                                  config.resnet_block,
                                  config.resnet_in_channels,
                                  config.resnet_out_channels,
                                  False)

        # Fpn
        self.fpn_ncek = FeatPyramidNeck(config.fpn_in_channels,
                                        config.fpn_out_channels,
                                        config.fpn_num_outs)

        # Rpn and rpn loss
        self.gt_labels_stage1 = Tensor(np.ones((self.train_batch_size, config.num_gts)).astype(np.uint8))
        self.rpn_with_loss = RPN(config,
                                 self.train_batch_size,
                                 config.rpn_in_channels,
                                 config.rpn_feat_channels,
                                 config.num_anchors,
                                 config.rpn_cls_out_channels)

        # Proposal
        self.proposal_generator = Proposal(config,
                                           self.train_batch_size,
                                           config.activate_num_classes,
                                           config.use_sigmoid_cls)
        self.proposal_generator.set_train_local(config, True)
        self.proposal_generator_test = Proposal(config,
                                                config.test_batch_size,
                                                config.activate_num_classes,
                                                config.use_sigmoid_cls)
        self.proposal_generator_test.set_train_local(config, False)

        # Assign and sampler stage two
        self.bbox_assigner_sampler_for_rcnn = BboxAssignSampleForRcnn(config, self.train_batch_size,
                                                                      config.num_bboxes_stage2, True)
        self.decode = P.BoundingBoxDecode(max_shape=(768, 1280), means=self.target_means, \
                                          stds=self.target_stds)

        # Roi
        self.roi_align = SingleRoIExtractor(config,
                                            config.roi_layer,
                                            config.roi_align_out_channels,
                                            config.roi_align_featmap_strides,
                                            self.train_batch_size,
                                            config.roi_align_finest_scale,
                                            mask=False)
        self.roi_align.set_train_local(config, True)

        self.roi_align_mask = SingleRoIExtractor(config,
                                                 config.roi_layer,
                                                 config.roi_align_out_channels,
                                                 config.roi_align_featmap_strides,
                                                 self.train_batch_size,
                                                 config.roi_align_finest_scale,
                                                 mask=True)
        self.roi_align_mask.set_train_local(config, True)

        self.roi_align_test = SingleRoIExtractor(config,
                                                 config.roi_layer,
                                                 config.roi_align_out_channels,
                                                 config.roi_align_featmap_strides,
                                                 1,
                                                 config.roi_align_finest_scale,
                                                 mask=False)
        self.roi_align_test.set_train_local(config, False)

        self.roi_align_mask_test = SingleRoIExtractor(config,
                                                      config.roi_layer,
                                                      config.roi_align_out_channels,
                                                      config.roi_align_featmap_strides,
                                                      1,
                                                      config.roi_align_finest_scale,
                                                      mask=True)
        self.roi_align_mask_test.set_train_local(config, False)

        # Rcnn
        self.rcnn_cls = RcnnCls(config, self.train_batch_size, self.num_classes)
        self.rcnn_mask = RcnnMask(config, self.train_batch_size, self.num_classes)

        # Op declare
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()

        self.concat = P.Concat(axis=0)
        self.concat_1 = P.Concat(axis=1)
        self.concat_2 = P.Concat(axis=2)
        self.reshape = P.Reshape()
        self.select = P.Select()
        self.greater = P.Greater()
        self.transpose = P.Transpose()

        # Test mode
        self.test_batch_size = config.test_batch_size
        self.split = P.Split(axis=0, output_num=self.test_batch_size)
        self.split_shape = P.Split(axis=0, output_num=4)
        self.split_scores = P.Split(axis=1, output_num=self.num_classes)
        self.split_fb_mask = P.Split(axis=1, output_num=self.num_classes)
        self.split_cls = P.Split(axis=0, output_num=self.num_classes-1)
        self.tile = P.Tile()
        self.gather = P.GatherNd()

        self.rpn_max_num = config.rpn_max_num

        self.zeros_for_nms = Tensor(np.zeros((self.rpn_max_num, 3)).astype(np.float16))
        self.ones_mask = np.ones((self.rpn_max_num, 1)).astype(np.bool)
        self.zeros_mask = np.zeros((self.rpn_max_num, 1)).astype(np.bool)
        self.bbox_mask = Tensor(np.concatenate((self.ones_mask, self.zeros_mask,
                                                self.ones_mask, self.zeros_mask), axis=1))
        self.nms_pad_mask = Tensor(np.concatenate((self.ones_mask, self.ones_mask,
                                                   self.ones_mask, self.ones_mask, self.zeros_mask), axis=1))

        self.test_score_thresh = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_score_thr)
        self.test_score_zeros = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * 0)
        self.test_box_zeros = Tensor(np.ones((self.rpn_max_num, 4)).astype(np.float16) * -1)
        self.test_iou_thr = Tensor(np.ones((self.rpn_max_num, 1)).astype(np.float16) * config.test_iou_thr)
        self.test_max_per_img = config.test_max_per_img
        self.nms_test = P.NMSWithMask(config.test_iou_thr)
        self.softmax = P.Softmax(axis=1)
        self.logicand = P.LogicalAnd()
        self.oneslike = P.OnesLike()
        self.test_topk = P.TopK(sorted=True)
        self.test_num_proposal = self.test_batch_size * self.rpn_max_num

        # Improve speed
        self.concat_start = min(self.num_classes - 2, 55)
        self.concat_end = (self.num_classes - 1)

        # Init tensor
        roi_align_index = [np.array(np.ones((config.num_expected_pos_stage2 + config.num_expected_neg_stage2, 1)) * i,
                                    dtype=np.float16) for i in range(self.train_batch_size)]

        roi_align_index_test = [np.array(np.ones((config.rpn_max_num, 1)) * i, dtype=np.float16) \
                                for i in range(self.test_batch_size)]

        self.roi_align_index_tensor = Tensor(np.concatenate(roi_align_index))
        self.roi_align_index_test_tensor = Tensor(np.concatenate(roi_align_index_test))

        roi_align_index_pos = [np.array(np.ones((config.num_expected_pos_stage2, 1)) * i,
                                        dtype=np.float16) for i in range(self.train_batch_size)]
        self.roi_align_index_tensor_pos = Tensor(np.concatenate(roi_align_index_pos))

        self.rcnn_loss_cls_weight = Tensor(np.array(config.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(np.array(config.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_loss_mask_fb_weight = Tensor(np.array(config.rcnn_loss_mask_fb_weight).astype(np.float16))

        self.argmax_with_value = P.ArgMaxWithValue(axis=1)
        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.onehot = P.OneHot()
        self.reducesum = P.ReduceSum()
        self.sigmoid = P.Sigmoid()
        self.expand_dims = P.ExpandDims()
        self.test_mask_fb_zeros = Tensor(np.zeros((self.rpn_max_num, 28, 28)).astype(np.float16))
        self.value = Tensor(1.0, mstype.float16)
Пример #16
0
 ('Split', {
     'block': P.Split(1, 2),
     'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
     'skip': ['backward']}),
 ('Argmax', {
     'block': P.Argmax(),
     'desc_inputs': [[128, 32, 32, 64]],
     'desc_bprop': [0],
     'skip': ['backward']}),
 ('Argmin', {
     'block': P.Argmin(),
     'desc_inputs': [[128, 32, 32, 64]],
     'desc_bprop': [1],
     'skip': ['backward']}),
 ('ArgMaxWithValue', {
     'block': P.ArgMaxWithValue(),
     'desc_inputs': [[128, 32, 32, 64]],
     'desc_bprop': [[1], [1]],
     'skip': ['backward']}),
 ('ArgMinWithValue', {
     'block': P.ArgMinWithValue(),
     'desc_inputs': [[128, 32, 32, 64]],
     'desc_bprop': [[1], [1]],
     'skip': ['backward']}),
 ('Transpose_dim3', {
     'block': P.Transpose(),
     'desc_const': [(0, 2, 1)],
     'desc_inputs': [[1, 2, 3]],
     'desc_bprop': [[1, 3, 2]]}),
 ('Transpose_dim4', {
     'block': P.Transpose(),
Пример #17
0
    def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals):
        super(BboxAssignSampleForRcnn, self).__init__()
        cfg = config
        self.dtype = np.float32
        self.ms_type = mstype.float32
        self.batch_size = batch_size
        self.neg_iou_thr = cfg.neg_iou_thr_stage2
        self.pos_iou_thr = cfg.pos_iou_thr_stage2
        self.min_pos_iou = cfg.min_pos_iou_stage2
        self.num_gts = cfg.num_gts
        self.num_bboxes = num_bboxes
        self.num_expected_pos = cfg.num_expected_pos_stage2
        self.num_expected_neg = cfg.num_expected_neg_stage2
        self.num_expected_total = cfg.num_expected_total_stage2

        self.add_gt_as_proposals = add_gt_as_proposals
        self.label_inds = Tensor(
            np.arange(1, self.num_gts + 1).astype(np.int32))
        self.add_gt_as_proposals_valid = Tensor(
            np.full(self.num_gts, self.add_gt_as_proposals, dtype=np.int32))

        self.concat = P.Concat(axis=0)
        self.max_gt = P.ArgMaxWithValue(axis=0)
        self.max_anchor = P.ArgMaxWithValue(axis=1)
        self.sum_inds = P.ReduceSum()
        self.iou = P.IOU()
        self.greaterequal = P.GreaterEqual()
        self.greater = P.Greater()
        self.select = P.Select()
        self.gatherND = P.GatherNd()
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()
        self.logicaland = P.LogicalAnd()
        self.less = P.Less()
        self.random_choice_with_mask_pos = P.RandomChoiceWithMask(
            self.num_expected_pos)
        self.random_choice_with_mask_neg = P.RandomChoiceWithMask(
            self.num_expected_neg)
        self.reshape = P.Reshape()
        self.equal = P.Equal()
        self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0,
                                                              0.0),
                                                       stds=(0.1, 0.1, 0.2,
                                                             0.2))
        self.concat_axis1 = P.Concat(axis=1)
        self.logicalnot = P.LogicalNot()
        self.tile = P.Tile()

        # Check
        self.check_gt_one = Tensor(
            np.full((self.num_gts, 4), -1, dtype=self.dtype))
        self.check_anchor_two = Tensor(
            np.full((self.num_bboxes, 4), -2, dtype=self.dtype))

        # Init tensor
        self.assigned_gt_inds = Tensor(np.full(num_bboxes, -1, dtype=np.int32))
        self.assigned_gt_zeros = Tensor(
            np.array(np.zeros(num_bboxes), dtype=np.int32))
        self.assigned_gt_ones = Tensor(
            np.array(np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_ignores = Tensor(
            np.full(num_bboxes, -1, dtype=np.int32))
        self.assigned_pos_ones = Tensor(
            np.array(np.ones(self.num_expected_pos), dtype=np.int32))

        self.gt_ignores = Tensor(np.full(self.num_gts, -1, dtype=np.int32))
        self.range_pos_size = Tensor(
            np.arange(self.num_expected_pos).astype(self.dtype))
        self.check_neg_mask = Tensor(
            np.array(np.ones(self.num_expected_neg - self.num_expected_pos),
                     dtype=np.bool))
        self.bboxs_neg_mask = Tensor(
            np.zeros((self.num_expected_neg, 4), dtype=self.dtype))
        self.labels_neg_mask = Tensor(
            np.array(np.zeros(self.num_expected_neg), dtype=np.uint8))

        self.reshape_shape_pos = (self.num_expected_pos, 1)
        self.reshape_shape_neg = (self.num_expected_neg, 1)

        self.scalar_zero = Tensor(0.0, dtype=self.ms_type)
        self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr, dtype=self.ms_type)
        self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr, dtype=self.ms_type)
        self.scalar_min_pos_iou = Tensor(self.min_pos_iou, dtype=self.ms_type)
Пример #18
0
 def __init__(self, network):
     super(FastTextInferCell, self).__init__(auto_prefix=False)
     self.network = network
     self.argmax = P.ArgMaxWithValue(axis=1, keep_dims=True)
     self.log_softmax = nn.LogSoftmax(axis=1)
Пример #19
0

def read_img(img_path):
    img_ori = cv2.imread(img_path)
    img = cv2.cvtColor(img_ori, cv2.COLOR_BGR2RGB)
    img = cv2.resize(img, (96, 96))
    img = img.transpose(2, 0, 1)
    img = np.array([img]).astype(np.float32)/255.
    img = Tensor(img)
    return img, img_ori


blur_soft = nn.Softmax(0)
kps_soft = nn.Softmax(-1)
reshape = P.Reshape()
argmax = P.ArgMaxWithValue()


def test_trains(args):
    '''test trains'''
    print('----eval----begin----')

    model_path = args.pretrained
    result_file = model_path.replace('.ckpt', '.txt')
    if os.path.exists(result_file):
        os.remove(result_file)
    epoch_result = open(result_file, 'a')
    epoch_result.write(model_path + '\n')

    network = FaceQABackbone()
    ckpt_path = model_path
Пример #20
0
 def __init__(self, axis=-1):
     super(Softmax, self).__init__()
     self.max = P.ArgMaxWithValue(axis=axis, keep_dims=True)
     self.sum = P.ReduceSum(keep_dims=True)
     self.axis = axis
 def __init__(self, axis, keep_dims):
     super().__init__()
     self.op = op.ArgMaxWithValue(axis=axis, keep_dims=keep_dims)
Пример #22
0
 def __init__(self, axis=0):
     super(NetArgmaxWithValueBig, self).__init__()
     self.argmax = P.ArgMaxWithValue(axis)
Пример #23
0
    def __init__(self,
                 config,
                 representation_size,
                 batch_size,
                 num_classes,
                 target_means=(0., 0., 0., 0.),
                 target_stds=(0.1, 0.1, 0.2, 0.2)):
        super(Rcnn, self).__init__()
        cfg = config
        self.rcnn_loss_cls_weight = Tensor(
            np.array(cfg.rcnn_loss_cls_weight).astype(np.float16))
        self.rcnn_loss_reg_weight = Tensor(
            np.array(cfg.rcnn_loss_reg_weight).astype(np.float16))
        self.rcnn_fc_out_channels = cfg.rcnn_fc_out_channels
        self.target_means = target_means
        self.target_stds = target_stds
        self.num_classes = num_classes
        self.in_channels = cfg.rcnn_in_channels
        self.train_batch_size = batch_size
        self.test_batch_size = cfg.test_batch_size
        self.use_ambigous_sample = cfg.use_ambigous_sample

        shape_0 = (self.rcnn_fc_out_channels, representation_size)
        weights_0 = initializer("XavierUniform",
                                shape=shape_0[::-1],
                                dtype=mstype.float16).to_tensor()
        shape_1 = (self.rcnn_fc_out_channels, self.rcnn_fc_out_channels)
        weights_1 = initializer("XavierUniform",
                                shape=shape_1[::-1],
                                dtype=mstype.float16).to_tensor()
        self.shared_fc_0 = DenseNoTranpose(representation_size,
                                           self.rcnn_fc_out_channels,
                                           weights_0)
        self.shared_fc_1 = DenseNoTranpose(self.rcnn_fc_out_channels,
                                           self.rcnn_fc_out_channels,
                                           weights_1)

        cls_weight = initializer(
            'Normal',
            shape=[num_classes, self.rcnn_fc_out_channels][::-1],
            dtype=mstype.float16).to_tensor()
        reg_weight = initializer(
            'Normal',
            shape=[num_classes * 4, self.rcnn_fc_out_channels][::-1],
            dtype=mstype.float16).to_tensor()
        self.cls_scores = DenseNoTranpose(self.rcnn_fc_out_channels,
                                          num_classes, cls_weight)
        self.reg_scores = DenseNoTranpose(self.rcnn_fc_out_channels,
                                          num_classes * 4, reg_weight)

        self.flatten = P.Flatten()
        self.relu = P.ReLU()
        self.logicaland = P.LogicalAnd()
        self.loss_cls = P.SoftmaxCrossEntropyWithLogits()
        self.loss_bbox = P.SmoothL1Loss(beta=1.0)
        self.reshape = P.Reshape()
        self.onehot = P.OneHot()
        self.greater = P.Greater()
        self.equal = P.Equal()
        self.cast = P.Cast()
        self.sum_loss = P.ReduceSum()
        self.tile = P.Tile()
        self.expandims = P.ExpandDims()

        self.gather = P.GatherNd()
        self.argmax = P.ArgMaxWithValue(axis=1)

        self.on_value = Tensor(1.0, mstype.float32)
        self.off_value = Tensor(0.0, mstype.float32)
        self.value = Tensor(1.0, mstype.float16)

        self.num_bboxes = (cfg.num_expected_pos_stage2 +
                           cfg.num_expected_neg_stage2) * batch_size
        if self.use_ambigous_sample:
            self.num_bboxes = (cfg.num_expected_pos_stage2 +
                               cfg.num_expected_amb_stage2 +
                               cfg.num_expected_neg_stage2) * batch_size

        rmv_first = np.ones((self.num_bboxes, self.num_classes))
        rmv_first[:, 0] = np.zeros((self.num_bboxes, ))
        self.rmv_first_tensor = Tensor(rmv_first.astype(np.float16))

        self.num_bboxes_test = cfg.rpn_max_num * cfg.test_batch_size

        range_max = np.arange(self.num_bboxes_test).astype(np.int32)
        self.range_max = Tensor(range_max)
Пример #24
0
 def __init__(self, strategy1, strategy2, strategy3):
     super().__init__()
     self.mul1 = P.Mul().set_strategy(strategy1)
     self.arg_max_with_value = P.ArgMaxWithValue(
         keep_dims=False, axis=-1).set_strategy(strategy2)
     self.mul2 = P.Mul().set_strategy(strategy3)
    def __init__(self, config, batch_size, num_bboxes, add_gt_as_proposals):
        super(BboxAssignSampleForRcnn, self).__init__()
        cfg = config
        self.batch_size = batch_size
        self.neg_iou_thr = cfg.neg_iou_thr_stage2
        self.pos_iou_thr = cfg.pos_iou_thr_stage2
        self.min_pos_iou = cfg.min_pos_iou_stage2
        self.num_gts = cfg.num_gts
        self.num_bboxes = num_bboxes
        self.num_expected_pos = cfg.num_expected_pos_stage2
        self.num_expected_neg = cfg.num_expected_neg_stage2
        self.num_expected_total = cfg.num_expected_total_stage2

        self.add_gt_as_proposals = add_gt_as_proposals
        self.label_inds = Tensor(
            np.arange(1, self.num_gts + 1).astype(np.int32))
        self.add_gt_as_proposals_valid = Tensor(
            np.array(self.add_gt_as_proposals * np.ones(self.num_gts),
                     dtype=np.int32))

        self.concat = P.Concat(axis=0)
        self.max_gt = P.ArgMaxWithValue(axis=0)
        self.max_anchor = P.ArgMaxWithValue(axis=1)
        self.sum_inds = P.ReduceSum()
        self.iou = P.IOU()
        self.greaterequal = P.GreaterEqual()
        self.greater = P.Greater()
        self.select = P.Select()
        self.gatherND = P.GatherNd()
        self.squeeze = P.Squeeze()
        self.cast = P.Cast()
        self.logicaland = P.LogicalAnd()
        self.less = P.Less()
        self.random_choice_with_mask_pos = P.RandomChoiceWithMask(
            self.num_expected_pos)
        self.random_choice_with_mask_neg = P.RandomChoiceWithMask(
            self.num_expected_neg)
        self.reshape = P.Reshape()
        self.equal = P.Equal()
        self.bounding_box_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0,
                                                              0.0),
                                                       stds=(0.1, 0.1, 0.2,
                                                             0.2))
        self.concat_axis1 = P.Concat(axis=1)
        self.logicalnot = P.LogicalNot()
        self.tile = P.Tile()

        # Check
        self.check_gt_one = Tensor(
            np.array(-1 * np.ones((self.num_gts, 4)), dtype=np.float16))
        self.check_anchor_two = Tensor(
            np.array(-2 * np.ones((self.num_bboxes, 4)), dtype=np.float16))

        # Init tensor
        self.assigned_gt_inds = Tensor(
            np.array(-1 * np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_zeros = Tensor(
            np.array(np.zeros(num_bboxes), dtype=np.int32))
        self.assigned_gt_ones = Tensor(
            np.array(np.ones(num_bboxes), dtype=np.int32))
        self.assigned_gt_ignores = Tensor(
            np.array(-1 * np.ones(num_bboxes), dtype=np.int32))
        self.assigned_pos_ones = Tensor(
            np.array(np.ones(self.num_expected_pos), dtype=np.int32))

        self.gt_ignores = Tensor(
            np.array(-1 * np.ones(self.num_gts), dtype=np.int32))
        self.range_pos_size = Tensor(
            np.arange(self.num_expected_pos).astype(np.float16))
        self.check_neg_mask = Tensor(
            np.array(np.ones(self.num_expected_neg - self.num_expected_pos),
                     dtype=np.bool))
        self.bboxs_neg_mask = Tensor(
            np.zeros((self.num_expected_neg, 4), dtype=np.float16))
        self.labels_neg_mask = Tensor(
            np.array(np.zeros(self.num_expected_neg), dtype=np.uint8))

        self.reshape_shape_pos = (self.num_expected_pos, 1)
        self.reshape_shape_neg = (self.num_expected_neg, 1)

        self.scalar_zero = Tensor(0.0, dtype=mstype.float16)
        self.scalar_neg_iou_thr = Tensor(self.neg_iou_thr,
                                         dtype=mstype.float16)
        self.scalar_pos_iou_thr = Tensor(self.pos_iou_thr,
                                         dtype=mstype.float16)
        self.scalar_min_pos_iou = Tensor(self.min_pos_iou,
                                         dtype=mstype.float16)

        self.expand_dims = P.ExpandDims()
        self.split = P.Split(axis=1, output_num=4)
        self.concat_last_axis = P.Concat(axis=-1)
        self.round = P.Round()
        self.image_h_w = Tensor(
            [cfg.img_height, cfg.img_width, cfg.img_height, cfg.img_width],
            dtype=mstype.float16)
        self.range = nn.Range(start=0, limit=cfg.num_expected_pos_stage2)
        self.crop_and_resize = P.CropAndResize(method="bilinear_v2")
        self.mask_shape = (cfg.mask_shape[0], cfg.mask_shape[1])
        self.squeeze_mask_last = P.Squeeze(axis=-1)