Пример #1
0
 def __init__(self,
              kernel_size=1,
              stride=1,
              pad_mode="valid"):
     super(AvgPool2d, self).__init__(kernel_size, stride, pad_mode)
     self.avg_pool = P.AvgPool(ksize=self.kernel_size,
                               strides=self.stride,
                               padding=self.pad_mode)
Пример #2
0
 def __init__(self,
              kernel_size=1,
              stride=1,
              pad_mode="valid",
              data_format="NCHW"):
     super(AvgPool2d, self).__init__(kernel_size, stride, pad_mode, data_format)
     self.avg_pool = P.AvgPool(ksize=self.kernel_size,
                               strides=self.stride,
                               padding=self.pad_mode,
                               data_format=self.format)
Пример #3
0
 def __init__(self,
              kernel_size=1,
              stride=1,
              pad_mode="valid"):
     super(AvgPool1d, self).__init__(kernel_size, stride, pad_mode)
     validator.check_value_type('kernel_size', kernel_size, [int], self.cls_name)
     validator.check_value_type('stride', stride, [int], self.cls_name)
     self.pad_mode = validator.check_string('pad_mode', pad_mode.upper(), ['VALID', 'SAME'], self.cls_name)
     validator.check_integer("kernel_size", kernel_size, 1, Rel.GE, self.cls_name)
     validator.check_integer("stride", stride, 1, Rel.GE, self.cls_name)
     self.kernel_size = (1, kernel_size)
     self.stride = (1, stride)
     self.avg_pool = P.AvgPool(ksize=self.kernel_size,
                               strides=self.stride,
                               padding=self.pad_mode)
     self.shape = F.shape
     self.reduce_mean = P.ReduceMean(keep_dims=True)
     self.slice = P.Slice()
     self.expand = P.ExpandDims()
Пример #4
0
    def __init__(self,
                 block,
                 layer_nums,
                 in_channels,
                 out_channels,
                 strides,
                 num_classes):
        super(ResNet, self).__init__()

        if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
            raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
        input_data_channel = 4
        if format_ == "NCHW":
            input_data_channel = 3
        self.conv1 = _conv7x7(input_data_channel, 64, stride=2)
        self.bn1 = _bn(64)
        self.relu = P.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same", data_format=format_)
        self.layer1 = self._make_layer(block,
                                       layer_nums[0],
                                       in_channel=in_channels[0],
                                       out_channel=out_channels[0],
                                       stride=strides[0])
        self.layer2 = self._make_layer(block,
                                       layer_nums[1],
                                       in_channel=in_channels[1],
                                       out_channel=out_channels[1],
                                       stride=strides[1])
        self.layer3 = self._make_layer(block,
                                       layer_nums[2],
                                       in_channel=in_channels[2],
                                       out_channel=out_channels[2],
                                       stride=strides[2])
        self.layer4 = self._make_layer(block,
                                       layer_nums[3],
                                       in_channel=in_channels[3],
                                       out_channel=out_channels[3],
                                       stride=strides[3])

        self.avg_pool = P.AvgPool(7, 1, data_format=format_)
        self.flatten = nn.Flatten()
        self.end_point = _fc(out_channels[3], num_classes)
Пример #5
0
 def __init__(self, kernel_size=1, stride=1, pad_mode="VALID", padding=0):
     avg_pool = P.AvgPool(ksize=kernel_size,
                          strides=stride,
                          padding=pad_mode)
     super(AvgPool2d, self).__init__(kernel_size, stride, pad_mode, padding,
                                     avg_pool)
Пример #6
0
     'skip': ['backward']}),
 ('Sigmoid', {
     'block': P.Sigmoid(),
     'desc_inputs': [[1, 3, 4, 4]],
     'desc_bprop': [[1, 3, 4, 4]]}),
 ('MaxPool', {
     'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
     'desc_inputs': [[100, 3, 28, 28]],
     'desc_bprop': [[100, 3, 14, 14]]}),
 ('MaxPoolGrad', {
     'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
     'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
     'desc_bprop': [[3, 4, 6, 6]],
     'skip': ['backward']}),
 ('AvgPool', {
     'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
     'desc_inputs': [[100, 3, 28, 28]],
     'desc_bprop': [[100, 3, 14, 14]]}),
 ('AvgPoolGrad', {
     'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
     'desc_const': [(3, 4, 6, 6)],
     'const_first': True,
     'desc_inputs': [[3, 4, 6, 6]],
     'desc_bprop': [[3, 4, 6, 6]],
     'skip': ['backward']}),
 ('MaxPoolWithArgmax', {
     'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
     'desc_inputs': [[128, 32, 32, 64]],
     'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
 ('SoftmaxCrossEntropyWithLogits', {
     'block': P.SoftmaxCrossEntropyWithLogits(),
Пример #7
0
        'desc_inputs': [Tensor(np.ones([1, 1, 32]).astype(np.float32))],
        'skip': ['backward']
    }),
    # rank of x is not 4
    ('MaxPool2', {
        'block': (P.MaxPool(ksize=50, strides=1), {
            'exception': ValueError,
            'error_keywords': ['MaxPool']
        }),
        'desc_inputs': [Tensor(np.ones([1, 1, 32, 32]).astype(np.float32))],
        'skip': ['backward']
    }),

    # input is scalar
    ('AvgPool0', {
        'block': (P.AvgPool(), {
            'exception': TypeError,
            'error_keywords': ['AvgPool']
        }),
        'desc_inputs': [5.0],
        'skip': ['backward']
    }),
    # rank of x is not 4
    ('AvgPool1', {
        'block': (P.AvgPool(), {
            'exception': ValueError,
            'error_keywords': ['AvgPool']
        }),
        'desc_inputs': [Tensor(np.ones([1, 1, 32]).astype(np.float32))],
        'skip': ['backward']
    }),