def __init__(self, temp=0.1): super(LossNet, self).__init__() self.concat = P.Concat() self.exp = P.Exp() self.t = P.Transpose() self.diag_part = P.DiagPart() self.matmul = P.MatMul() self.sum = P.ReduceSum() self.sum_keep_dim = P.ReduceSum(keep_dims=True) self.log = P.Log() self.mean = P.ReduceMean() self.shape = P.Shape() self.eye = P.Eye() self.temp = temp
'block': NetForUnpackInput(P.Unpack(axis=0)), 'desc_inputs':[[2, 4]], 'desc_bprop':[[4], [4]], }), ('Unpack_1', { 'block': NetForUnpackInput(P.Unpack(axis=-1)), 'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))], 'desc_bprop':[[1], [1], [1]], }), ('Diag', { 'block': P.Diag(), 'desc_inputs': [[4]], 'desc_bprop': [[4, 4]], }), ('DiagPart', { 'block': P.DiagPart(), 'desc_inputs': [[4, 4]], 'desc_bprop': [[4]], }), ('SpaceToBatch_1', { 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]), 'desc_inputs': [[1, 3, 2, 2]], 'desc_bprop': [[4, 3, 1, 1]], }), ('SpaceToBatch_2', { 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]), 'desc_inputs': [[1, 3, 2, 2]], 'desc_bprop': [[4, 3, 2, 4]], }), ('BatchToSpace_1', { 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),