def __init__(self, network, optimizer, scale_update_cell=None): super(TransformerTrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.reducer_flag = False self.all_reduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() if self.parallel_mode not in ParallelMode.MODE_LIST: raise ValueError("Parallel mode does not support: ", self.parallel_mode) if self.parallel_mode in [ ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL ]: self.reducer_flag = True self.grad_reducer = None if self.reducer_flag: mean = _get_gradients_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE) self.clip_gradients = ClipGradients() self.cast = P.Cast() if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.gpu_target = False self.alloc_status = P.NPUAllocFloatStatus() self.get_status = P.NPUGetFloatStatus() self.clear_status = P.NPUClearFloatStatus() self.reduce_sum = P.ReduceSum(keep_dims=False) self.depend_parameter_use = P.ControlDepend(depend_mode=1) self.base = Tensor(1, mstype.float32) self.less_equal = P.LessEqual() self.hyper_map = C.HyperMap() self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter( Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32)) self.add_flags(has_effect=True)
def __init__(self, network, optimizer, scale_update_cell=None, micro_batches=None, norm_clip=1.0, mech=None): super(_TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.hyper_map = C.HyperMap() if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.gpu_target = False self.alloc_status = NPUAllocFloatStatus() self.get_status = NPUGetFloatStatus() self.clear_status = NPUClearFloatStatus() self.reduce_sum = ReduceSum(keep_dims=False) self.base = Tensor(1, mstype.float32) self.less_equal = LessEqual() self.depend_parameter_use = ControlDepend(depend_mode=1) self.allreduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() self.grad_reducer = F.identity self.reducer_flag = self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL] if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = self.parallel_mode != ParallelMode.STAND_ALONE self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") self.add_flags(has_effect=True) # dp params self._micro_batches = micro_batches norm_clip = check_param_type('norm_clip', norm_clip, float) self._l2_norm = check_value_positive('norm_clip', norm_clip) self._split = P.Split(0, self._micro_batches) self._clip_by_global_norm = _ClipGradients() self._mech = mech self._tuple_add = _TupleAdd() self._hyper_map = C.HyperMap() self._micro_float = Tensor(micro_batches, mstype.float32)
def __init__(self, network, optimizer, scale_update_cell=None): super(BertFinetuneCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.weights = optimizer.parameters self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.reducer_flag = False self.allreduce = P.AllReduce() self.parallel_mode = context.get_auto_parallel_context("parallel_mode") if self.parallel_mode in [ ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL ]: self.reducer_flag = True self.grad_reducer = None if self.reducer_flag: mean = context.get_auto_parallel_context("gradients_mean") degree = get_group_size() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE) self.cast = P.Cast() self.gpu_target = False if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.alloc_status = P.NPUAllocFloatStatus() self.get_status = P.NPUGetFloatStatus() self.clear_before_grad = P.NPUClearFloatStatus() self.reduce_sum = P.ReduceSum(keep_dims=False) self.depend_parameter_use = P.ControlDepend(depend_mode=1) self.base = Tensor(1, mstype.float32) self.less_equal = P.LessEqual() self.hyper_map = C.HyperMap() self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter( Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32))
grads = self.grad_reducer(grads) succ = self.optimizer(grads) return F.depend(loss, succ) grad_scale = C.MultitypeFuncGraph("grad_scale") reciprocal = P.Reciprocal() @grad_scale.register("Tensor", "Tensor") def tensor_grad_scale(scale, grad): return grad * reciprocal(scale) _grad_overflow = C.MultitypeFuncGraph("_grad_overflow") grad_overflow = P.FloatStatus() @_grad_overflow.register("Tensor") def _tensor_grad_overflow(grad): return grad_overflow(grad) class BertTrainOneStepWithLossScaleCell(nn.Cell): """ Encapsulation class of bert network training. Append an optimizer to the training network after that the construct function can be called to create the backward graph. Args:
def __init__(self, network, optimizer, scale_update_cell=None, micro_batches=None, norm_bound=1.0, noise_mech=None, clip_mech=None): super(_TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.set_grad() self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.hyper_map = C.HyperMap() if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.gpu_target = False self.alloc_status = NPUAllocFloatStatus() self.get_status = NPUGetFloatStatus() self.clear_status = NPUClearFloatStatus() self.reduce_sum = ReduceSum(keep_dims=False) self.base = Tensor(1, mstype.float32) self.less_equal = LessEqual() self.depend_parameter_use = ControlDepend(depend_mode=1) self.allreduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() self.grad_reducer = F.identity self.reducer_flag = self.parallel_mode in [ ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL ] if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = self.parallel_mode != ParallelMode.STAND_ALONE self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor( scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") self.add_flags(has_effect=True) # dp params self._micro_batches = micro_batches self._norm_bound = norm_bound self._split = P.Split(0, self._micro_batches) self._clip_by_global_norm = _ClipGradients() self._noise_mech = noise_mech self._clip_mech = clip_mech self._add = P.TensorAdd() self._norm = nn.Norm() self._tuple_add = _TupleAdd() self._hyper_map = C.HyperMap() self._micro_float = Tensor(micro_batches, mstype.float32) self._zero = Tensor(0, mstype.float32) self._assign = P.Assign() self._div = P.Div() self._sqrt = P.Sqrt() self._reduce_sum = P.ReduceSum() self._square_all = P.Square() self._less = P.Less() self._cast = P.Cast() self._noise_mech_param_updater = None if self._noise_mech is not None and self._noise_mech._decay_policy is not None: self._noise_mech_param_updater = _MechanismsParamsUpdater( decay_policy=self._noise_mech._decay_policy, decay_rate=self._noise_mech._noise_decay_rate, cur_noise_multiplier=self._noise_mech._noise_multiplier, init_noise_multiplier=self._noise_mech. _initial_noise_multiplier)
def __init__(self): super(Net, self).__init__() self.status = P.FloatStatus()