def __init__(self, bins=10, momentum=0.0, mu=0.02): super(GHMRLoss, self).__init__() self.bins = bins self.momentum = momentum self.mu = mu edges_left = np.array([float(x) / bins for x in range(bins)], dtype=np.float32) self.edges_left = Tensor(edges_left.reshape((bins, 1, 1, 1, 1))) edges_right = np.array([float(x) / bins for x in range(1, bins + 1)], dtype=np.float32) edges_right[-1] += 1e-4 self.edges_right = Tensor(edges_right.reshape((bins, 1, 1, 1, 1))) if momentum >= 0: self.acc_sum = Parameter(initializer(0, [bins], mstype.float32)) self.abs = ops.Abs() self.sqrt = ops.Sqrt() self.cast = ops.Cast() self.select = ops.Select() self.reshape = ops.Reshape() self.reduce_sum = ops.ReduceSum() self.max = ops.Maximum() self.less = ops.Less() self.equal = ops.Equal() self.greater = ops.Greater() self.logical_and = ops.LogicalAnd() self.greater_equal = ops.GreaterEqual() self.zeros_like = ops.ZerosLike() self.expand_dims = ops.ExpandDims()
def __init__(self, mixture_size: int, do_layer_norm: bool = False) -> None: super(Scalar_mix, self).__init__() self.mixture_size = mixture_size self.do_layer_norm = do_layer_norm self.scalar_parameters = ParameterTuple([Parameter(Tensor(np.array([0.0]), mindspore.float32)) \ for _ in range(mixture_size)]) self.gamma = Parameter(Tensor(np.array([0.0]), mindspore.float32)) self.sum = P.ReduceSum() self.sqrt = P.Sqrt() self.cat = P.Concat() self.unsqueeze = P.ExpandDims(0)
def __init__(self, log_scale_min=-7.0, reduce=True): super(mix_gaussian_loss, self).__init__() self.log_scale_min = log_scale_min self.reduce = reduce self.transpose_op = P.Transpose() self.maximum = P.Maximum() self.tile = P.Tile() self.exp = P.Exp() self.logsoftmax = P.LogSoftmax(-1) self.expand_dims = P.ExpandDims() self.sums = P.ReduceSum() self.lse = log_sum_exp() self.sq = P.Square() self.sqrt = P.Sqrt() self.const = P.ScalarToArray() self.log = P.Log()
def __init__(self, log_scale_min=-7.0, reduce=True): super(mix_gaussian_loss, self).__init__() self.log_scale_min = log_scale_min self.reduce = reduce self.transpose_op = P.Transpose() self.maximum = P.Maximum() self.tile = P.Tile() self.exp = P.Exp() self.expand_dims = P.ExpandDims() self.sums = P.ReduceSum() self.lse = log_sum_exp() self.sq = P.Square() self.sqrt = P.Sqrt() self.const = P.ScalarToArray() self.log = P.Log() self.tensor_one = Tensor(1., ms.float32) if context.get_context("device_target") == "CPU": self.logsoftmax = log_softmax() else: self.logsoftmax = P.LogSoftmax(-1)
def __init__(self, net_config, K=100, enable_nms_fp16=True): super(MultiPoseDecode, self).__init__() self.K = K self.nms = NMS(enable_nms_fp16=enable_nms_fp16) self.shape = ops.Shape() self.gather_topk = GatherTopK() self.gather_topk_channel = GatherTopKChannel() self.gather_by_ind = GatherFeatureByInd() self.half = ops.Split(axis=-1, output_num=2) self.half_first = ops.Split(axis=0, output_num=2) self.split = ops.Split(axis=-1, output_num=4) self.flip_lr = FlipLR() self.flip_lr_off = FlipLROff() self.flip_tensor = FlipTensor() self.concat = ops.Concat(axis=1) self.concat_a2 = ops.Concat(axis=2) self.concat_a3 = ops.Concat(axis=3) self.trans_gather_feature = TransposeGatherFeature() self.expand_dims = ops.ExpandDims() self.reshape = ops.Reshape() self.add = ops.TensorAdd() self.dtype = ops.DType() self.cast = ops.Cast() self.thresh = 0.1 self.transpose = ops.Transpose() self.perm_list = (0, 2, 1, 3) self.tile = ops.Tile() self.greater = ops.Greater() self.square = ops.Square() self.sqrt = ops.Sqrt() self.reduce_sum = ops.ReduceSum() self.min = ops.ArgMinWithValue(axis=3) self.max = ops.Maximum() self.hm_hp = net_config.hm_hp self.dense_hp = net_config.dense_hp self.reg_offset = net_config.reg_offset self.reg_hp_offset = net_config.reg_hp_offset self.hm_hp_ind = 3 if self.hm_hp else 2 self.reg_ind = self.hm_hp_ind + 1 if self.reg_offset else self.hm_hp_ind self.reg_hp_ind = self.reg_ind + 1 if self.reg_hp_offset else self.reg_ind
def construct(self, inputs, targets): """ Args: - inputs: feature matrix with shape (batch_size, feat_dim) - targets: ground truth labels with shape (num_classes) """ n = inputs.shape[0] # Compute pairwise distance, replace by the official when merged pow = P.Pow() sum = P.ReduceSum(keep_dims=True) expand = P.BroadcastTo((n, n)) transpose = P.Transpose() mul = P.Mul() add = P.Add() sqrt = P.Sqrt() equal = P.Equal() cat = P.Concat() ones_like = P.OnesLike() dist = pow(inputs, 2) dist = sum(dist, axis=1) dist = expand(dist) dist = dist + transpose(dist, (1, 0)) temp1 = P.matmul(inputs, transpose(inputs, (1, 0))) temp1 = mul(-2, temp1) dist = add(dist, temp1) dist = P.composite.clip_by_value( dist, clip_value_min=1e-12, clip_value_max=100000000 ) # for numerical stability, clip_value_max=? why must set? dist = sqrt(dist) # For each anchor, find the hardest positive and negative targets = expand(targets) mask = equal(targets, transpose(targets, (1, 0))) dist_ap = [] dist_an = [] # only for debugging ##################### # print("dist is") # print(dist.shape) # print(dist) # print("mask is") # print(mask.shape) # print(mask) # print(mask[0]) ##################### for i in range(n): minval = -1.0 maxval = -1.0 for j in range(n): if mask[i][j] and dist[i][j] > maxval: maxval = dist[i][j] if not mask[i][j] and (dist[i][j] < minval or minval == -1): minval = dist[i][j] if (not isinstance(minval, Tensor) or not isinstance(maxval, Tensor) or minval == -1.0 or maxval == -1.0): if self.error_msg is not None: print("Error Msg", file=self.error_msg) print("mask {} is".format(i), file=self.error_msg) print(mask[i], file=self.error_msg) print("dist is:", file=self.error_msg) print(dist[i], file=self.error_msg) print(maxval, file=self.error_msg) print(minval, file=self.error_msg) print(type(maxval), file=self.error_msg) print(type(minval), file=self.error_msg) self.error_msg.flush() # assert minval != -1.0 and isinstance(minval, Tensor) # assert maxval != -1.0 and isinstance(maxval, Tensor) dist_ap.append(maxval.asnumpy()) dist_an.append(minval.asnumpy()) dist_ap = Tensor(dist_ap, ms.float32) dist_an = Tensor(dist_an, ms.float32) # only for debugging ##################### # print(dist_ap) # print(dist_ap.shape) # print(dist_an) ##################### # Compute ranking hinge loss y = ones_like(dist_an) loss = self.ranking_loss(dist_an, dist_ap, y) # # compute accuracy # correct = torch.ge(dist_an, dist_ap).sum().item() return loss # class GradOriTripletLoss(nn.Cell) # def __init__(self, net): # super(GradOriTripletLoss, self).__init__() # self.net = net # self.grad_op = P.GradOperation(get_all=True) # # def construct(self, inputs, targets): # gradient_function = self.grad_op(self.net) # return gradient_function(inputs, targets)
def global_norm(x): sqrt = P.Sqrt() reduce_sum = P.ReduceSum() l2 = P.L2Normalize() x = sqrt(reduce_sum(P.functional.square(l2(x)))) return x