Пример #1
0
    def get_gps_los_velocity(self, geom_obj, start_date=None, end_date=None, ref_site=None,
                             gps_comp='enu2los', horz_az_angle=-90.):

        dates, dis = self.read_gps_los_displacement(
            geom_obj,
            start_date=start_date,
            end_date=end_date,
            ref_site=ref_site,
            gps_comp=gps_comp,
            horz_az_angle=horz_az_angle)[:2]

        # displacement -> velocity
        # if:
        # 1. num of observations > 2 AND
        # 2. time overlap > 1/4
        dis2vel = True
        if len(dates) <= 2:
            dis2vel = False
        elif start_date and end_date:
            t0 = ptime.date_list2vector([start_date])[0][0]
            t1 = ptime.date_list2vector([end_date])[0][0]
            if dates[-1] - dates[0] <= (t1 - t0) / 4:
                dis2vel = False

        if dis2vel:
            date_list = [dt.datetime.strftime(i, '%Y%m%d') for i in dates]
            A = time_func.get_design_matrix4time_func(date_list)
            self.velocity = np.dot(np.linalg.pinv(A), dis)[1]
        else:
            self.velocity = np.nan

        return self.velocity, dis
Пример #2
0
def search_gps(SNWE,
               start_date=None,
               end_date=None,
               site_list_file=None,
               min_num_solution=50,
               print_msg=True):
    """Search available GPS sites within the geo bounding box from UNR website
    Parameters: SNWE       : tuple of 4 float, indicating (South, North, West, East) in degrees
                start_date : string in YYYYMMDD format
                end_date   : string in YYYYMMDD format
                site_list_file : string.
                min_num_solution : int, minimum number of solutions available
    Returns:    site_names : 1D np.array of string for GPS station names
                site_lats  : 1D np.array for lat
                site_lons  : 1D np.array for lon
    """
    # download site list file if it's not found in current directory
    if site_list_file is None:
        site_list_file = os.path.basename(unr_site_list_file)
        if not os.path.isfile(site_list_file):
            dload_site_list(print_msg=print_msg)

    txt_data = np.loadtxt(site_list_file,
                          dtype=bytes,
                          skiprows=1,
                          usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                                   10)).astype(str)
    site_names = txt_data[:, 0]
    site_lats, site_lons = txt_data[:, 1:3].astype(np.float32).T
    site_lons -= np.round(site_lons / (360.)) * 360.
    t_start = np.array([
        dt(*time.strptime(i, "%Y-%m-%d")[0:5])
        for i in txt_data[:, 7].astype(str)
    ])
    t_end = np.array([
        dt(*time.strptime(i, "%Y-%m-%d")[0:5])
        for i in txt_data[:, 8].astype(str)
    ])
    num_solution = txt_data[:, 10].astype(np.int16)

    # limit on space
    idx = ((site_lats >= SNWE[0]) * (site_lats <= SNWE[1]) *
           (site_lons >= SNWE[2]) * (site_lons <= SNWE[3]))

    # limit on time
    if start_date:
        t0 = ptime.date_list2vector([start_date])[0][0]
        idx *= t_end >= t0
    if end_date:
        t1 = ptime.date_list2vector([end_date])[0][0]
        idx *= t_start <= t1

    # limit on number of solutions
    if min_num_solution is not None:
        idx *= num_solution >= min_num_solution

    return site_names[idx], site_lats[idx], site_lons[idx]
Пример #3
0
    def read_displacement(self,
                          start_date=None,
                          end_date=None,
                          print_msg=True,
                          display=False):
        """ Read GPS displacement time-series (defined by start/end_date)
        Parameters: start/end_date : str in YYYYMMDD format
        Returns:    dates : 1D np.ndarray of datetime.datetime object
                    dis_e/n/u : 1D np.ndarray of displacement in meters in np.float32
                    std_e/n/u : 1D np.ndarray of displacement STD in meters in np.float32
        """
        # download file if it's not exists.
        if not os.path.isfile(self.file):
            self.dload_site(print_msg=print_msg)

        # read dates, dis_e, dis_n, dis_u
        if print_msg:
            print(
                'reading time and displacement in east/north/vertical direction'
            )
        data = np.loadtxt(self.file, dtype=bytes, skiprows=1).astype(str)

        self.dates = np.array(
            [dt.datetime.strptime(i, "%y%b%d") for i in data[:, 1]])
        #self.dates = np.array([ptime.decimal_year2datetime(i) for i in data[:, 2]])
        self.date_list = [x.strftime('%Y%m%d') for x in self.dates]

        (self.dis_e, self.dis_n, self.dis_u, self.std_e, self.std_n,
         self.std_u) = data[:, (8, 10, 12, 14, 15, 16)].astype(np.float32).T

        # cut out the specified time range
        t_flag = np.ones(len(self.dates), np.bool_)
        if start_date:
            t0 = ptime.date_list2vector([start_date])[0][0]
            t_flag[self.dates < t0] = 0
        if end_date:
            t1 = ptime.date_list2vector([end_date])[0][0]
            t_flag[self.dates > t1] = 0
        self.dates = self.dates[t_flag]
        self.dis_e = self.dis_e[t_flag]
        self.dis_n = self.dis_n[t_flag]
        self.dis_u = self.dis_u[t_flag]
        self.std_e = self.std_e[t_flag]
        self.std_n = self.std_n[t_flag]
        self.std_u = self.std_u[t_flag]

        if display:
            import matplotlib.pyplot as plt
            fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True)
            ax[0].scatter(self.dates, self.dis_e, s=2**2, label='East')
            ax[1].scatter(self.dates, self.dis_n, s=2**2, label='North')
            ax[2].scatter(self.dates, self.dis_u, s=2**2, label='Up')
            plt.show()

        return (self.dates, self.dis_e, self.dis_n, self.dis_u, self.std_e,
                self.std_n, self.std_u)
Пример #4
0
def velocity2timeseries(date_list, vel=0.03, display=False):
    '''Simulate displacement time-series from linear velocity
    Inputs:
        date_list - list of string in YYYYMMDD or YYMMDD format
        vel        - float, velocity in meter per year
        display    - bool, display simulation or not
    Output:
        ts         - 2D np.array in size of (date_num,1), displacement time-series in m
    Example:
        date_list = pnet.read_baseline_file('bl_list.txt')[0]
        ts0 = simulate_timeseries(date_list, vel=0.03, display=True)
    '''
    tbase_list = ptime.date_list2tbase(date_list)[0]
    ts = vel / 365.25 * np.array(tbase_list)
    ts = ts.reshape(-1,1)

    if display:
        dates = ptime.date_list2vector(date_list)[0]
        ## Display
        marker_size = 5
        plt.figure()
        plt.scatter(dates, ts*100.0, s=marker_size**2)
        plt.xlabel('Time (years)')
        plt.ylabel('LOS Displacement (cm)')
        plt.title('Displacement time-series with velocity = '+str(vel)+' m/yr')
        plt.show()
    return ts
Пример #5
0
def read_timeseries_yx(y, x, ts_file, ref_y=None, ref_x=None, win_size=1):
    """ Read time-series of one pixel with input y/x
    Parameters: y/x         : int, row/column number of interest
                ts_file     : string, filename of time-series HDF5 file
                ref_y/x     : int, row/column number of reference pixel
    Returns:    dates : 1D np.array of datetime.datetime objects, i.e. datetime.datetime(2010, 10, 20, 0, 0)
                dis   : 1D np.array of float in meter
    """
    # read date
    obj = timeseries(ts_file)
    obj.open(print_msg=False)
    dates = ptime.date_list2vector(obj.dateList)[0]
    dates = np.array(dates)

    # read displacement
    print('input y / x: {} / {}'.format(y, x))
    box = (x, y, x + 1, y + 1)
    dis = readfile.read(ts_file, box=box)[0]
    if win_size != 1:
        buf = int(win_size / 2)
        box_win = (x - buf, y - buf, x + buf + 1, y + buf + 1)
        dis_win = readfile.read(ts_file, box=box_win)[0]
        dis = np.nanmean(dis_win.reshape((obj.numDate, -1)), axis=1)

    # reference pixel
    if ref_y is not None:
        ref_box = (ref_x, ref_y, ref_x + 1, ref_y + 1)
        dis -= readfile.read(ts_file, box=ref_box)[0]

    #start at zero
    dis -= dis[0]
    return dates, dis
Пример #6
0
def exclude_dates():
    global inps, dateList

    if inps.ex_date_list:
        input_ex_date = list(inps.ex_date_list)
        inps.ex_date_list = []

        if input_ex_date:
            for ex_date in input_ex_date:

                if os.path.isfile(ex_date):
                    ex_date = ptime.read_date_list(ex_date)
                else:
                    ex_date = [ptime.yyyymmdd(ex_date)]

                inps.ex_date_list += list(
                    set(ex_date) - set(inps.ex_date_list))

            # delete dates not existed in input file
            inps.ex_date_list = sorted(
                list(set(inps.ex_date_list).intersection(dateList)))
            inps.ex_dates = ptime.date_list2vector(inps.ex_date_list)[0]
            inps.ex_idx_list = sorted(
                [dateList.index(i) for i in inps.ex_date_list])
            print(('exclude date:' + str(inps.ex_date_list)))
Пример #7
0
def velocity2timeseries(date_list, vel=0.03, display=False):
    '''Simulate displacement time-series from linear velocity
    Inputs:
        date_list - list of string in YYYYMMDD or YYMMDD format
        vel        - float, velocity in meter per year
        display    - bool, display simulation or not
    Output:
        ts         - 2D np.array in size of (date_num,1), displacement time-series in m
    Example:
        date_list = pnet.read_baseline_file('bl_list.txt')[0]
        ts0 = simulate_timeseries(date_list, vel=0.03, display=True)
    '''
    tbase_list = ptime.date_list2tbase(date_list)[0]
    ts = vel / 365.25 * np.array(tbase_list)
    ts = ts.reshape(-1, 1)

    if display:
        dates = ptime.date_list2vector(date_list)[0]
        ## Display
        marker_size = 5
        plt.figure()
        plt.scatter(dates, ts * 100.0, s=marker_size**2)
        plt.xlabel('time [years]')
        plt.ylabel('LOS displacement [cm]')
        plt.title('displacement time-series with velocity = ' + str(vel) +
                  ' m/yr')
        plt.show()
    return ts
Пример #8
0
    def read_displacement(self, start_date=None, end_date=None, print_msg=True, display=False):
        # download file if it's not exists.
        if not os.path.isfile(self.file):
            self.dload_site(print_msg=print_msg)

        # read dates, dis_e, dis_n, dis_u
        if print_msg:
            print('reading time and displacement in east/north/vertical direction')
        data = np.loadtxt(self.file, dtype=bytes, skiprows=1).astype(str)
        self.dates = np.array([dt(*time.strptime(i, "%y%b%d")[0:5])
                               for i in data[:, 1]])
        #self.dates = np.array([ptime.decimal_year2datetime(i) for i in data[:, 2]])
        (self.dis_e,
         self.dis_n,
         self.dis_u,
         self.std_e,
         self.std_n,
         self.std_u) = data[:, (8,10,12,14,15,16)].astype(np.float32).T

        # cut out the specified time range
        t_flag = np.ones(len(self.dates), np.bool_)
        if start_date:
            t0 = ptime.date_list2vector([start_date])[0][0]
            t_flag[self.dates < t0] = 0
        if end_date:
            t1 = ptime.date_list2vector([end_date])[0][0]
            t_flag[self.dates > t1] = 0
        self.dates = self.dates[t_flag]
        self.dis_e = self.dis_e[t_flag]
        self.dis_n = self.dis_n[t_flag]
        self.dis_u = self.dis_u[t_flag]
        self.std_e = self.std_e[t_flag]
        self.std_n = self.std_n[t_flag]
        self.std_u = self.std_u[t_flag]

        if display:
            import matplotlib.pyplot as plt
            fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True)
            ax[0].scatter(self.dates, self.dis_e, s=2**2, label='East')
            ax[1].scatter(self.dates, self.dis_n, s=2**2, label='North')
            ax[2].scatter(self.dates, self.dis_u, s=2**2, label='Up')
            plt.show()

        return (self.dates,
                self.dis_e, self.dis_n, self.dis_u,
                self.std_e, self.std_n, self.std_u)
Пример #9
0
def manual_select_pairs_to_remove(stackFile):
    """Manually select interferograms to remove"""
    print('\n-------------------------------------------------------------')
    print('Manually select interferograms to remove')
    print('1) click two dates/points to select one pair of interferogram')
    print('2) repeat until you select all pairs you would like to remove')
    print('3) close the figure to continue the program ...')
    print('-------------------------------------------------------------\n')
    obj = ifgramStack(stackFile)
    obj.open()
    date12ListAll = obj.date12List
    pbase = obj.get_perp_baseline_timeseries(dropIfgram=False)
    dateList = obj.dateList
    datesNum = mdates.date2num(np.array(ptime.date_list2vector(dateList)[0]))

    date12ListKept = obj.get_date12_list(dropIfgram=True)
    date12ListDropped = sorted(list(set(date12ListAll) - set(date12ListKept)))

    # Display the network
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax = pp.plot_network(ax,
                         date12ListAll,
                         dateList,
                         list(pbase),
                         date12List_drop=date12ListDropped)
    print('display the network of interferogram of file: ' + stackFile)
    date_click = []
    date12_click = []

    def onclick(event):
        idx = nearest_neighbor(event.xdata, event.ydata, datesNum, pbase)
        print('click at ' + dateList[idx])
        date_click.append(dateList[idx])
        if len(date_click) % 2 == 0 and date_click[-2] != date_click[-1]:
            [mDate, sDate] = sorted(date_click[-2:])
            mIdx = dateList.index(mDate)
            sIdx = dateList.index(sDate)
            date12 = mDate + '_' + sDate
            if date12 in date12ListAll:
                print('select date12: ' + date12)
                date12_click.append(date12)
                ax.plot([datesNum[mIdx], datesNum[sIdx]],
                        [pbase[mIdx], pbase[sIdx]],
                        'r',
                        lw=4)
            else:
                print(date12 + ' is not existed in input file')
        plt.draw()

    cid = fig.canvas.mpl_connect('button_press_event', onclick)
    plt.show()

    if not ut.yes_or_no('Proceed to drop the ifgrams/date12?'):
        date12_click = None

    return date12_click
Пример #10
0
def print_timseries_date_stat(dateList):
    datevector = ptime.date_list2vector(dateList)[1]
    print('Start Date: {}'.format(dateList[0]))
    print('End   Date: {}'.format(dateList[-1]))
    print('Number of dates  : {}'.format(len(dateList)))
    print('STD of datetimes : {:.2f} years'.format(np.std(datevector)))
    #print('----------------------')
    #print('List of dates:\n{}'.format(dateList))
    #print('----------------------')
    #print('List of dates in years:\n{}'.format(datevector))
    return
Пример #11
0
def estimate_S1AB_bias(mintpy_dir, dates, ts_dis):
    """Estimate the bias between Sentinel-1 A and B.
    Parameters: mintpy_dir - str, path of the mintpy working directory
                dates      - list of datetime.datetime objects
                ts_dis     - 2D np.ndarray in size of (num_date, num_pixel) in float32
    Returns:    bias       - 1D np.ndarray in size of (num_pixel) in float32
                flagA/B    - 1D np.ndarray in size of (num_date) in bool
                dates_fit  - list of datetime.datetime objects
                ts_fitA/B  - 1D np.ndarray in size of (num_date_fit) in float32
    """
    num_date = len(dates)
    ts_dis = ts_dis.reshape(num_date, -1)

    # dates/flags for S1A/B
    date_listA = np.loadtxt(os.path.join(mintpy_dir, 'S1A_date.txt'),
                            dtype=str).tolist()
    date_listB = np.loadtxt(os.path.join(mintpy_dir, 'S1B_date.txt'),
                            dtype=str).tolist()
    date_list = sorted(date_listA + date_listB)
    min_date = date_listB[0]
    flagA = np.array([x in date_listA and x >= min_date for x in date_list],
                     dtype=np.bool_)
    flagB = np.array([x in date_listB and x >= min_date for x in date_list],
                     dtype=np.bool_)
    # update date_list to the shared time period only
    date_listA = np.array(date_list)[flagA].tolist()
    date_listB = np.array(date_list)[flagB].tolist()

    # fit
    model = dict(polynomial=1)
    mA = time_func.estimate_time_func(model,
                                      date_listA,
                                      ts_dis[flagA, :],
                                      ref_date=date_listA[0])[1]
    mB = time_func.estimate_time_func(model,
                                      date_listB,
                                      ts_dis[flagB, :],
                                      ref_date=date_listB[0])[1]

    # grab bias/offset from the fitting time-series
    date_list_fit = ptime.get_date_range(min_date, date_list[-1], dstep=1)
    dates_fit = ptime.date_list2vector(date_list_fit)[0]
    GA_fit = time_func.get_design_matrix4time_func(date_list_fit,
                                                   model,
                                                   ref_date=date_listA[0])
    GB_fit = time_func.get_design_matrix4time_func(date_list_fit,
                                                   model,
                                                   ref_date=date_listB[0])
    ts_fitA = np.matmul(GA_fit, mA)
    ts_fitB = np.matmul(GB_fit, mB)
    bias = np.median(ts_fitB - ts_fitA, axis=0)

    return bias, flagA, flagB, dates_fit, ts_fitA, ts_fitB
Пример #12
0
def print_timseries_date_stat(dateList):
    datevector = ptime.date_list2vector(dateList)[1]
    print('Start Date: ' + dateList[0])
    print('End   Date: ' + dateList[-1])
    print('Number of acquisitions    : %d' % len(dateList))
    print('Std. of acquisition times : %.2f yeras' % std(datevector))
    print('----------------------')
    print('List of dates:')
    print(dateList)
    print('----------------------')
    print('List of dates in years')
    print(datevector)
    return
Пример #13
0
def print_timseries_date_stat(dateList):
    datevector = ptime.date_list2vector(dateList)[1]
    print('Start Date: '+dateList[0])
    print('End   Date: '+dateList[-1])
    print('Number of acquisitions    : %d' % len(dateList))
    print('Std. of acquisition times : %.2f yeras' % std(datevector))
    print('----------------------')
    print('List of dates:')
    print(dateList)
    print('----------------------')
    print('List of dates in years')
    print(datevector)
    return
Пример #14
0
def search_gps(SNWE, start_date=None, end_date=None, site_list_file=None, print_msg=True):
    """Search available GPS sites within the geo bounding box from UNR website
    Parameters: SNWE : tuple of 4 float, indicating (South, North, West, East) in degrees
                start_date : string in YYYYMMDD format
                end_date   : string in YYYYMMDD format
                site_list_file : string.
    Returns:    site_names : 1D np.array of string for GPS station names
                site_lats  : 1D np.array for lat
                site_lons  : 1D np.array for lon
    """
    # download site list file if it's not found in current directory
    if site_list_file is None:
        site_list_file = os.path.basename(unr_site_list_file)
        if not os.path.isfile(site_list_file):
            dload_site_list(print_msg=print_msg)

    txt_data = np.loadtxt(site_list_file,
                          dtype=bytes,
                          skiprows=1,
                          usecols=(0,1,2,3,4,5,6,7,8,9)).astype(str)
    site_names = txt_data[:, 0]
    site_lats, site_lons = txt_data[:, 1:3].astype(np.float32).T
    site_lons  -= np.round(site_lons / (360.)) * 360.
    t_start = np.array([dt(*time.strptime(i, "%Y-%m-%d")[0:5]) for i in txt_data[:, 7].astype(str)])
    t_end = np.array([dt(*time.strptime(i, "%Y-%m-%d")[0:5]) for i in txt_data[:, 8].astype(str)])

    # limit on space
    idx = ((site_lats >= SNWE[0]) * (site_lats <= SNWE[1]) * 
           (site_lons >= SNWE[2]) * (site_lons <= SNWE[3]))

    # limit on time
    if start_date:
        t0 = ptime.date_list2vector([start_date])[0][0]
        idx *= t_end >= t0
    if end_date:
        t1 = ptime.date_list2vector([end_date])[0][0]
        idx *= t_start <= t1

    return site_names[idx], site_lats[idx], site_lons[idx]
Пример #15
0
def read_exclude_date(input_ex_date, dateListAll):
    # default value
    ex_date_list = []
    ex_dates = []
    ex_flag = np.ones((len(dateListAll)), np.bool_)

    ex_date_list = ptime.read_date_list(input_ex_date,
                                        date_list_all=dateListAll)
    if ex_date_list:
        ex_dates = ptime.date_list2vector(ex_date_list)[0]
        for i in ex_date_list:
            ex_flag[dateListAll.index(i)] = False
        vprint('exclude date:' + str(ex_date_list))
    return ex_date_list, ex_dates, ex_flag
Пример #16
0
def manual_select_pairs_to_remove(stackFile):
    """Manually select interferograms to remove"""
    print('\n-------------------------------------------------------------')
    print('Manually select interferograms to remove')
    print('1) click two dates/points to select one pair of interferogram')
    print('2) repeat until you select all pairs you would like to remove')
    print('3) close the figure to continue the program ...')
    print('-------------------------------------------------------------\n')
    obj = ifgramStack(stackFile)
    obj.open()
    date12ListAll = obj.date12List
    pbase = obj.get_perp_baseline_timeseries(dropIfgram=False)
    dateList = obj.dateList
    datesNum = mdates.date2num(np.array(ptime.date_list2vector(dateList)[0]))

    date12ListKept = obj.get_date12_list(dropIfgram=True)
    date12ListDropped = sorted(list(set(date12ListAll) - set(date12ListKept)))

    # Display the network
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax = pp.plot_network(ax, date12ListAll, dateList, list(pbase), date12List_drop=date12ListDropped)
    print('display the network of interferogram of file: '+stackFile)
    date_click = []
    date12_click = []

    def onclick(event):
        idx = nearest_neighbor(event.xdata, event.ydata, datesNum, pbase)
        print('click at '+dateList[idx])
        date_click.append(dateList[idx])
        if len(date_click) % 2 == 0 and date_click[-2] != date_click[-1]:
            [mDate, sDate] = sorted(date_click[-2:])
            mIdx = dateList.index(mDate)
            sIdx = dateList.index(sDate)
            date12 = mDate+'_'+sDate
            if date12 in date12ListAll:
                print('select date12: '+date12)
                date12_click.append(date12)
                ax.plot([datesNum[mIdx], datesNum[sIdx]], [pbase[mIdx], pbase[sIdx]], 'r', lw=4)
            else:
                print(date12+' is not existed in input file')
        plt.draw()
    cid = fig.canvas.mpl_connect('button_press_event', onclick)
    plt.show()

    if not ut.yes_or_no('Proceed to drop the ifgrams/date12?'):
        date12_click = None

    return date12_click
Пример #17
0
def velo_disp(inps):
    """calculated displacement during startDate_endDate period based on linear assumption and velocity.h5"""
    data, atr = readfile.read('geo_velocity.h5')
    # calculate disp
    dt1, dt2 = ptime.date_list2vector([inps.startDate, inps.endDate])[0]
    data *= (dt2 - dt1).days / 365.25
    # displacement to phase
    range2phase = -4. * np.pi / float(atr['WAVELENGTH'])
    data *= range2phase
    # write atr
    atr['PROCESSOR'] = 'roipac'
    atr['FILE_TYPE'] = '.unw'
    atr['UNIT'] = 'radian'
    out_file = 'geo_' + '{}_{}.unw'.format(inps.startDate, inps.endDate)
    writefile.write(data, out_file=out_file, metadata=atr)
Пример #18
0
def read_timeseries_info():
    global atr, k, h5, dateList, tims, date_num, inps

    atr = readfile.read_attribute(inps.timeseries_file)
    k = atr['FILE_TYPE']
    print(('input file is '+k+': '+inps.timeseries_file))
    if not k in ['timeseries','GIANT_TS']:
        raise ValueError('Only timeseries file is supported!')

    h5 = h5py.File(inps.timeseries_file,'r')
    if k in ['GIANT_TS']:
        dateList = [dt.fromordinal(int(i)).strftime('%Y%m%d') for i in h5['dates'][:].tolist()]
    else:
        dateList = timeseries(inps.timeseries_file).get_date_list()
    date_num = len(dateList)
    inps.dates, tims = ptime.date_list2vector(dateList)
Пример #19
0
def read_timeseries_info():
    """Reads basic information about timeseries file being viewed"""
    global atr, k, h5, dateList, inps.tims, inps.num_date, inps

    atr = readfile.read_attribute(inps.timeseries_file)
    k = atr['FILE_TYPE']
    print(('input file is '+k+': '+inps.timeseries_file))
    if not k in ['timeseries','giantTimeseries']:
        raise ValueError('Only timeseries file is supported!')

    h5 = h5py.File(inps.timeseries_file,'r')
    if k in ['giantTimeseries']:
        dateList = [dt.fromordinal(int(i)).strftime('%Y%m%d') for i in h5['dates'][:].tolist()]
    else:
        dateList = timeseries(inps.timeseries_file).get_date_list()
    inps.num_date = len(dateList)
    inps.dates, inps.tims = ptime.date_list2vector(dateList)
Пример #20
0
def read_timeseries_info():
    global atr, k, h5, dateList, tims, date_num, inps

    atr = readfile.read_attribute(inps.timeseries_file)
    k = atr['FILE_TYPE']
    print(('input file is ' + k + ': ' + inps.timeseries_file))
    if not k in ['timeseries', 'GIANT_TS']:
        raise ValueError('Only timeseries file is supported!')

    h5 = h5py.File(inps.timeseries_file, 'r')
    if k in ['GIANT_TS']:
        dateList = [
            dt.fromordinal(int(i)).strftime('%Y%m%d')
            for i in h5['dates'][:].tolist()
        ]
    else:
        dateList = timeseries(inps.timeseries_file).get_date_list()
    date_num = len(dateList)
    inps.dates, tims = ptime.date_list2vector(dateList)
Пример #21
0
def read_exclude_date(input_ex_date, dateListAll):
    """
    Parameters: input_ex_date : list of string in YYYYMMDD or filenames for excluded dates
                dateListAll   : list of string in YYYYMMDD for all dates
    Returns:    ex_date_list  : list of string in YYYYMMDD for excluded dates
                ex_dates      : list of datetime.datetime objects for excluded dates
                ex_flag       : 1D np.ndarray in size of (num_date), 1/True for kept, 0/False for excluded
    """
    # default value
    ex_date_list = []
    ex_dates = []
    ex_flag = np.ones((len(dateListAll)), np.bool_)

    ex_date_list = ptime.read_date_list(input_ex_date, date_list_all=dateListAll)
    if ex_date_list:
        ex_dates = ptime.date_list2vector(ex_date_list)[0]
        for i in ex_date_list:
            ex_flag[dateListAll.index(i)] = False
        vprint('exclude date:'+str(ex_date_list))
    return ex_date_list, ex_dates, ex_flag
Пример #22
0
def main(iargs=None):
    inps = cmd_line_parse(iargs)
    print('\n*************** Spatial Average ******************')
    mean_list, date_list = ut.spatial_average(inps.file,
                                              datasetName=inps.datasetName,
                                              maskFile=inps.mask_file,
                                              saveList=True)
    atr = readfile.read_attribute(inps.file)
    k = atr['FILE_TYPE']
    if inps.disp_fig and k == 'timeseries':
        dates, datevector = ptime.date_list2vector(date_list)
        # plot
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.plot(dates, mean_list, '-o')#, lw=2, ms=16, alpha=0.7) #, mfc='crimson')
        ax.set_title('Spatial Average', fontsize=12)
        ax = pp.auto_adjust_xaxis_date(ax, datevector)[0]
        ax.set_xlabel('Time [years]', fontsize=12)
        ax.set_ylabel('Mean', fontsize=12)
        plt.show()
    return
Пример #23
0
def exclude_dates():
    global inps, dateList

    if inps.ex_date_list:
        input_ex_date = list(inps.ex_date_list)
        inps.ex_date_list = []

        if input_ex_date:
            for ex_date in input_ex_date:

                if os.path.isfile(ex_date):
                    ex_date = ptime.read_date_list(ex_date)
                else:
                    ex_date = [ptime.yyyymmdd(ex_date)]

                inps.ex_date_list += list(set(ex_date) - set(inps.ex_date_list))

            # delete dates not existed in input file
            inps.ex_date_list = sorted(list(set(inps.ex_date_list).intersection(dateList)))
            inps.ex_dates = ptime.date_list2vector(inps.ex_date_list)[0]
            inps.ex_idx_list = sorted([dateList.index(i) for i in inps.ex_date_list])
            print(('exclude date:' + str(inps.ex_date_list)))
Пример #24
0
def read_timeseries_yx(y,
                       x,
                       ts_file,
                       ref_y=None,
                       ref_x=None,
                       zero_first=True,
                       win_size=1,
                       unit='m',
                       method='mean',
                       print_msg=True):
    """ Read time-series of one pixel with input y/x
    Parameters: y/x        - int, row/column number of interest
                ts_file    - string, filename of time-series HDF5 file
                ref_y/x    - int, row/column number of reference pixel
                zero_first - bool, shift the time-series so that it starts from zero
                win_size   - int, windows size centered at point of interest
                unit       - str, output displacement unit
                method     - str, method to calculate the output displacement and its dispersity
    Returns:    dates      - 1D np.ndarray of datetime.datetime objects, i.e. datetime.datetime(2010, 10, 20, 0, 0)
                dis        - 1D np.ndarray of float32, displacement
                dis_std    - 1D np.ndarray of float32, displacement dispersity
    """
    # read date
    obj = timeseries(ts_file)
    obj.open(print_msg=False)
    dates = ptime.date_list2vector(obj.dateList)[0]
    dates = np.array(dates)

    # read displacement
    if print_msg:
        print('input y / x: {} / {}'.format(y, x))
    box = (x, y, x + 1, y + 1)
    dis = readfile.read(ts_file, box=box)[0]
    dis_std = None

    if win_size != 1:
        buf = int(win_size / 2)
        box_win = (x - buf, y - buf, x + buf + 1, y + buf + 1)
        dis_win = readfile.read(ts_file,
                                box=box_win)[0].reshape(obj.numDate, -1)

        if method == 'mean':
            dis = np.nanmean(dis_win, axis=1)
            dis_std = np.nanstd(dis_win, axis=1)

        elif method == 'median':
            dis = np.nanmedian(dis_win, axis=1)
            dis_std = median_abs_deviation(dis_win)

        else:
            raise ValueError('un-recognized method: {}'.format(method))

    # reference pixel
    if ref_y is not None:
        ref_box = (ref_x, ref_y, ref_x + 1, ref_y + 1)
        dis -= readfile.read(ts_file, box=ref_box)[0]

    #start at zero
    if zero_first:
        dis -= dis[0]

    # custom output unit
    if unit == 'm':
        pass
    elif unit == 'cm':
        dis *= 100.
        dis_std *= 100.
    elif unit == 'mm':
        dis *= 1000.
        dis_std *= 1000.
    else:
        raise ValueError('un-supported output unit: {}'.format(unit))

    return dates, dis, dis_std
Пример #25
0
def read_data(inps):
    """
    Returns: defo: 2D np.array with in-valid/masked-out pixel in NaN
    """
    # metadata
    inps.metadata = readfile.read_attribute(inps.file)
    k = inps.metadata['FILE_TYPE']
    inps.range2phase = -4. * np.pi / float(inps.metadata['WAVELENGTH'])
    ext = os.path.splitext(inps.file)[1]

    # mask
    if inps.mask_file:
        inps.mask = readfile.read(inps.mask_file)[0]
    else:
        inps.mask = np.ones(
            (int(inps.metadata['LENGTH']), int(inps.metadata['WIDTH'])),
            dtype=np.bool_)

    # data
    if k in ['.unw', 'velocity']:
        inps.phase = readfile.read(inps.file)[0]
        if k == 'velocity':
            # velocity to displacement
            date1, date2 = inps.metadata['DATE12'].split('_')
            dt1, dt2 = ptime.date_list2vector([date1, date2])[0]
            inps.phase *= (dt2 - dt1).days / 365.25
            # displacement to phase
            inps.phase *= inps.range2phase

        # update mask to exclude pixel with NaN value
        inps.mask *= ~np.isnan(inps.phase)
        # set all masked out pixel to NaN
        inps.phase[inps.mask == 0] = np.nan
    else:
        raise ValueError("input file not support yet: {}".format(k))
    print('number of pixels: {}'.format(np.sum(inps.mask)))

    # change reference point
    if inps.ref_lalo:
        coord = ut.coordinate(inps.metadata)
        ref_lat, ref_lon = inps.ref_lalo
        ref_y, ref_x = coord.geo2radar(ref_lat, ref_lon)[0:2]
        # update data
        inps.phase -= inps.phase[ref_y, ref_x]
        # update metadata
        inps.metadata['REF_LAT'] = ref_lat
        inps.metadata['REF_LON'] = ref_lon
        inps.metadata['REF_Y'] = ref_y
        inps.metadata['REF_X'] = ref_x

    # read geometry
    inps.lat, inps.lon = ut.get_lat_lon(inps.metadata)
    inps.inc_angle = readfile.read(inps.geom_file,
                                   datasetName='incidenceAngle')[0]
    inps.head_angle = np.ones(inps.inc_angle.shape, dtype=np.float32) * float(
        inps.metadata['HEADING'])
    inps.lat[inps.mask == 0] = np.nan
    inps.lon[inps.mask == 0] = np.nan
    inps.inc_angle[inps.mask == 0] = np.nan
    inps.head_angle[inps.mask == 0] = np.nan

    # output filename
    if not inps.outfile:
        out_dir = os.path.dirname(inps.file)
        proj_name = sensor.project_name2sensor_name(out_dir)[1]
        if not proj_name:
            raise ValueError('No custom/auto output filename found.')
        inps.outfile = '{}_{}.mat'.format(proj_name, inps.metadata['DATE12'])
        inps.outfile = os.path.join(out_dir, inps.outfile)
    inps.outfile = os.path.abspath(inps.outfile)
    return
Пример #26
0
def read_init_info(inps):
    # Time Series Info
    atr = readfile.read_attribute(inps.file[0])
    inps.key = atr['FILE_TYPE']
    if inps.key == 'timeseries':
        obj = timeseries(inps.file[0])
    elif inps.key == 'giantTimeseries':
        obj = giantTimeseries(inps.file[0])
    elif inps.key == 'HDFEOS':
        obj = HDFEOS(inps.file[0])
    else:
        raise ValueError('input file is {}, not timeseries.'.format(inps.key))
    obj.open(print_msg=inps.print_msg)
    inps.seconds = atr.get('CENTER_LINE_UTC', 0)

    if not inps.file_label:
        inps.file_label = []
        for fname in inps.file:
            fbase = os.path.splitext(os.path.basename(fname))[0]
            fbase = fbase.replace('timeseries', '')
            inps.file_label.append(fbase)

    # default mask file
    if not inps.mask_file and 'msk' not in inps.file[0]:
        dir_name = os.path.dirname(inps.file[0])
        if 'Y_FIRST' in atr.keys():
            inps.mask_file = os.path.join(dir_name, 'geo_maskTempCoh.h5')
        else:
            inps.mask_file = os.path.join(dir_name, 'maskTempCoh.h5')
        if not os.path.isfile(inps.mask_file):
            inps.mask_file = None

    ## date info
    inps.date_list = obj.dateList
    inps.num_date = len(inps.date_list)
    if inps.start_date:
        inps.date_list = [i for i in inps.date_list if int(i) >= int(inps.start_date)]
    if inps.end_date:
        inps.date_list = [i for i in inps.date_list if int(i) <= int(inps.end_date)]
    inps.num_date = len(inps.date_list)
    inps.dates, inps.yearList = ptime.date_list2vector(inps.date_list)

    (inps.ex_date_list,
     inps.ex_dates,
     inps.ex_flag) = read_exclude_date(inps.ex_date_list, inps.date_list)

    # reference date/index
    if not inps.ref_date:
        inps.ref_date = atr.get('REF_DATE', None)
    if inps.ref_date:
        inps.ref_idx = inps.date_list.index(inps.ref_date)
    else:
        inps.ref_idx = None

    # date/index of interest for initial display
    if not inps.idx:
        if (not inps.ref_idx) or (inps.ref_idx < inps.num_date / 2.):
            inps.idx = inps.num_date - 2
        else:
            inps.idx = 2

    # Display Unit
    (inps.disp_unit,
     inps.unit_fac) = pp.scale_data2disp_unit(metadata=atr, disp_unit=inps.disp_unit)[1:3]

    # Map info - coordinate unit
    inps.coord_unit = atr.get('Y_UNIT', 'degrees').lower()

    # Read Error List
    inps.ts_plot_func = plot_ts_scatter
    inps.error_ts = None
    inps.ex_error_ts = None
    if inps.error_file:
        # assign plot function
        inps.ts_plot_func = plot_ts_errorbar

        # read error file
        error_fc = np.loadtxt(inps.error_file, dtype=bytes).astype(str)
        inps.error_ts = error_fc[:, 1].astype(np.float)*inps.unit_fac

        # update error file with exlcude date
        if inps.ex_date_list:
            e_ts = inps.error_ts[:]
            inps.ex_error_ts = e_ts[inps.ex_flag == 0]
            inps.error_ts = e_ts[inps.ex_flag == 1]

    # Zero displacement for 1st acquisition
    if inps.zero_first:
        inps.zero_idx = min(0, np.min(np.where(inps.ex_flag)[0]))

    # default lookup table file and coordinate object
    if not inps.lookup_file:
        inps.lookup_file = ut.get_lookup_file('./inputs/geometryRadar.h5')
    inps.coord = ut.coordinate(atr, inps.lookup_file)

    ## size and lalo info
    inps.pix_box, inps.geo_box = subset.subset_input_dict2box(vars(inps), atr)
    inps.pix_box = inps.coord.check_box_within_data_coverage(inps.pix_box)
    inps.geo_box = inps.coord.box_pixel2geo(inps.pix_box)
    data_box = (0, 0, int(atr['WIDTH']), int(atr['LENGTH']))
    vprint('data   coverage in y/x: '+str(data_box))
    vprint('subset coverage in y/x: '+str(inps.pix_box))
    vprint('data   coverage in lat/lon: '+str(inps.coord.box_pixel2geo(data_box)))
    vprint('subset coverage in lat/lon: '+str(inps.geo_box))
    vprint('------------------------------------------------------------------------')

    # calculate multilook_num
    # ONLY IF:
    #   inps.multilook is True (no --nomultilook input) AND
    #   inps.multilook_num ==1 (no --multilook-num input)
    # Note: inps.multilook is used for this check ONLY
    # Note: multilooking is only applied to the 3D data cubes and their related operations:
    # e.g. spatial indexing, referencing, etc. All the other variables are in the original grid
    # so that users get the same result as the non-multilooked version.
    if inps.multilook and inps.multilook_num == 1:
        inps.multilook_num = pp.auto_multilook_num(inps.pix_box, inps.num_date,
                                                   max_memory=inps.maxMemory,
                                                   print_msg=inps.print_msg)

    ## reference pixel
    if not inps.ref_lalo and 'REF_LAT' in atr.keys():
        inps.ref_lalo = (float(atr['REF_LAT']), float(atr['REF_LON']))
    if inps.ref_lalo:
        # set longitude to [-180, 180)
        if inps.coord_unit.lower().startswith('deg') and inps.ref_lalo[1] >= 180.:
            inps.ref_lalo[1] -= 360.
        # ref_lalo --> ref_yx if not set in cmd
        if not inps.ref_yx:
            inps.ref_yx = inps.coord.geo2radar(inps.ref_lalo[0], inps.ref_lalo[1], print_msg=False)[0:2]

    # use REF_Y/X if ref_yx not set in cmd
    if not inps.ref_yx and 'REF_Y' in atr.keys():
        inps.ref_yx = (int(atr['REF_Y']), int(atr['REF_X']))

    # ref_yx --> ref_lalo if in geo-coord
    # for plotting purpose only
    if inps.ref_yx and 'Y_FIRST' in atr.keys():
        inps.ref_lalo = inps.coord.radar2geo(inps.ref_yx[0], inps.ref_yx[1], print_msg=False)[0:2]

    # do not plot native reference point if it's out of the coverage due to subset
    if (inps.ref_yx and 'Y_FIRST' in atr.keys()
        and inps.ref_yx == (int(atr.get('REF_Y',-999)), int(atr.get('REF_X',-999)))
        and not (    inps.pix_box[0] <= inps.ref_yx[1] < inps.pix_box[2]
                 and inps.pix_box[1] <= inps.ref_yx[0] < inps.pix_box[3])):
        inps.disp_ref_pixel = False
        print('the native REF_Y/X is out of subset box, thus do not display')

    ## initial pixel coord
    if inps.lalo:
        inps.yx = inps.coord.geo2radar(inps.lalo[0], inps.lalo[1], print_msg=False)[0:2]
    try:
        inps.lalo = inps.coord.radar2geo(inps.yx[0], inps.yx[1], print_msg=False)[0:2]
    except:
        inps.lalo = None

    ## figure settings
    # Flip up-down / left-right
    if inps.auto_flip:
        inps.flip_lr, inps.flip_ud = pp.auto_flip_direction(atr, print_msg=inps.print_msg)

    # Transparency - Alpha
    if not inps.transparency:
        # Auto adjust transparency value when showing shaded relief DEM
        if inps.dem_file and inps.disp_dem_shade:
            inps.transparency = 0.7
        else:
            inps.transparency = 1.0

    ## display unit ans wrap
    # if wrap_step == 2*np.pi (default value), set disp_unit_img = radian;
    # otherwise set disp_unit_img = disp_unit
    inps.disp_unit_img = inps.disp_unit
    if inps.wrap:
        inps.range2phase = -4. * np.pi / float(atr['WAVELENGTH'])
        if   'cm' == inps.disp_unit.split('/')[0]:   inps.range2phase /= 100.
        elif 'mm' == inps.disp_unit.split('/')[0]:   inps.range2phase /= 1000.
        elif 'm'  == inps.disp_unit.split('/')[0]:   inps.range2phase /= 1.
        else:
            raise ValueError('un-recognized display unit: {}'.format(inps.disp_unit))

        if (inps.wrap_range[1] - inps.wrap_range[0]) == 2*np.pi:
            inps.disp_unit_img = 'radian'
        inps.vlim = inps.wrap_range
    inps.cbar_label = 'Displacement [{}]'.format(inps.disp_unit_img)

    ## fit a suite of time func to the time series
    inps.model, inps.num_param = ts2vel.read_inps2model(inps, date_list=inps.date_list)

    # dense TS for plotting
    inps.date_list_fit = ptime.get_date_range(inps.date_list[0], inps.date_list[-1])
    inps.dates_fit = ptime.date_list2vector(inps.date_list_fit)[0]
    inps.G_fit = time_func.get_design_matrix4time_func(
        date_list=inps.date_list_fit,
        model=inps.model,
        seconds=inps.seconds)

    return inps, atr
Пример #27
0
def read_init_info(inps):
    # Time Series Info
    ts_file0 = inps.file[0]
    atr = readfile.read_attribute(ts_file0)
    inps.key = atr['FILE_TYPE']
    if inps.key == 'timeseries':
        obj = timeseries(ts_file0)
    elif inps.key == 'giantTimeseries':
        obj = giantTimeseries(ts_file0)
    elif inps.key == 'HDFEOS':
        obj = HDFEOS(ts_file0)
    else:
        raise ValueError('input file is {}, not timeseries.'.format(inps.key))
    obj.open(print_msg=inps.print_msg)

    if not inps.file_label:
        inps.file_label = [str(i) for i in list(range(len(inps.file)))]

    # default mask file
    if not inps.mask_file and 'masked' not in ts_file0:
        dir_name = os.path.dirname(ts_file0)
        if 'Y_FIRST' in atr.keys():
            inps.mask_file = os.path.join(dir_name, 'geo_maskTempCoh.h5')
        else:
            inps.mask_file = os.path.join(dir_name, 'maskTempCoh.h5')
        if not os.path.isfile(inps.mask_file):
            inps.mask_file = None

    # date info
    inps.date_list = obj.dateList
    inps.num_date = len(inps.date_list)
    if inps.start_date:
        inps.date_list = [
            i for i in inps.date_list if int(i) >= int(inps.start_date)
        ]
    if inps.end_date:
        inps.date_list = [
            i for i in inps.date_list if int(i) <= int(inps.end_date)
        ]
    inps.num_date = len(inps.date_list)
    inps.dates, inps.yearList = ptime.date_list2vector(inps.date_list)
    (inps.ex_date_list, inps.ex_dates,
     inps.ex_flag) = read_exclude_date(inps.ex_date_list, inps.date_list)

    # initial display index
    #if atr['REF_DATE'] in inps.date_list:
    #    inps.ref_idx = inps.date_list.index(atr['REF_DATE'])
    #else:
    #    inps.ref_idx = 0

    if inps.ref_date:
        inps.ref_idx = inps.date_list.index(inps.ref_date)
    else:
        inps.ref_idx = 3

    if not inps.idx:
        if inps.ref_idx < inps.num_date / 2.:
            inps.idx = inps.num_date - 3
        else:
            inps.idx = 3

    # Display Unit
    (inps.disp_unit,
     inps.unit_fac) = pp.scale_data2disp_unit(metadata=atr,
                                              disp_unit=inps.disp_unit)[1:3]

    # Map info - coordinate unit
    inps.coord_unit = atr.get('Y_UNIT', 'degrees').lower()

    # Read Error List
    inps.ts_plot_func = plot_ts_scatter
    inps.error_ts = None
    inps.ex_error_ts = None
    if inps.error_file:
        # assign plot function
        inps.ts_plot_func = plot_ts_errorbar
        # read error file
        error_fc = np.loadtxt(inps.error_file, dtype=bytes).astype(str)
        inps.error_ts = error_fc[:, 1].astype(np.float) * inps.unit_fac
        # update error file with exlcude date
        if inps.ex_date_list:
            e_ts = inps.error_ts[:]
            inps.ex_error_ts = e_ts[inps.ex_flag == 0]
            inps.error_ts = e_ts[inps.ex_flag == 1]

    # Zero displacement for 1st acquisition
    if inps.zero_first:
        inps.zero_idx = min(0, np.min(np.where(inps.ex_flag)[0]))

    # default lookup table file
    if not inps.lookup_file:
        inps.lookup_file = ut.get_lookup_file('./inputs/geometryRadar.h5')
    inps.coord = ut.coordinate(atr, inps.lookup_file)

    # size and lalo info
    inps.pix_box, inps.geo_box = subset.subset_input_dict2box(vars(inps), atr)
    inps.pix_box = inps.coord.check_box_within_data_coverage(inps.pix_box)
    inps.geo_box = inps.coord.box_pixel2geo(inps.pix_box)
    data_box = (0, 0, int(atr['WIDTH']), int(atr['LENGTH']))
    vprint('data   coverage in y/x: ' + str(data_box))
    vprint('subset coverage in y/x: ' + str(inps.pix_box))
    vprint('data   coverage in lat/lon: ' +
           str(inps.coord.box_pixel2geo(data_box)))
    vprint('subset coverage in lat/lon: ' + str(inps.geo_box))
    vprint(
        '------------------------------------------------------------------------'
    )

    # reference pixel
    if not inps.ref_lalo and 'REF_LAT' in atr.keys():
        inps.ref_lalo = (float(atr['REF_LAT']), float(atr['REF_LON']))
    if inps.ref_lalo:
        if inps.ref_lalo[1] > 180.:
            inps.ref_lalo[1] -= 360.
        inps.ref_yx = inps.coord.geo2radar(inps.ref_lalo[0],
                                           inps.ref_lalo[1],
                                           print_msg=False)[0:2]
    if not inps.ref_yx and 'REF_Y' in atr.keys():
        inps.ref_yx = [int(atr['REF_Y']), int(atr['REF_X'])]

    # Initial Pixel Coord
    if inps.lalo:
        inps.yx = inps.coord.geo2radar(inps.lalo[0],
                                       inps.lalo[1],
                                       print_msg=False)[0:2]
    try:
        inps.lalo = inps.coord.radar2geo(inps.yx[0],
                                         inps.yx[1],
                                         print_msg=False)[0:2]
    except:
        inps.lalo = None

    # Flip up-down / left-right
    if inps.auto_flip:
        inps.flip_lr, inps.flip_ud = pp.auto_flip_direction(
            atr, print_msg=inps.print_msg)

    # Transparency - Alpha
    if not inps.transparency:
        # Auto adjust transparency value when showing shaded relief DEM
        if inps.dem_file and inps.disp_dem_shade:
            inps.transparency = 0.7
        else:
            inps.transparency = 1.0

    # display unit ans wrap
    # if wrap_step == 2*np.pi (default value), set disp_unit_img = radian;
    # otherwise set disp_unit_img = disp_unit
    inps.disp_unit_img = inps.disp_unit
    if inps.wrap:
        inps.range2phase = -4. * np.pi / float(atr['WAVELENGTH'])
        if 'cm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 100.
        elif 'mm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 1000.
        elif 'm' == inps.disp_unit.split('/')[0]: inps.range2phase /= 1.
        else:
            raise ValueError('un-recognized display unit: {}'.format(
                inps.disp_unit))

        if (inps.wrap_range[1] - inps.wrap_range[0]) == 2 * np.pi:
            inps.disp_unit_img = 'radian'
        inps.vlim = inps.wrap_range
    inps.cbar_label = 'Displacement [{}]'.format(inps.disp_unit_img)
    return inps, atr
Пример #28
0
def read_data(inps):
    """
    Returns: defo: 2D np.array with in-valid/masked-out pixel in NaN
    """
    # metadata
    inps.metadata = readfile.read_attribute(inps.file)
    k = inps.metadata['FILE_TYPE']
    inps.range2phase =  -4. * np.pi / float(inps.metadata['WAVELENGTH'])

    # mask
    if inps.mask_file:
        inps.mask = readfile.read(inps.mask_file)[0]
    else:
        inps.mask = np.ones((int(inps.metadata['LENGTH']),
                             int(inps.metadata['WIDTH'])), dtype=np.bool_)

    # data
    if k in ['.unw','velocity']:
        inps.phase = readfile.read(inps.file)[0]
        if k == 'velocity':
            # velocity to displacement
            date1, date2 = inps.metadata['DATE12'].split('_')
            dt1, dt2 = ptime.date_list2vector([date1, date2])[0]
            inps.phase *= (dt2 - dt1).days / 365.25
            # displacement to phase
            inps.phase *= inps.range2phase

        # update mask to exclude pixel with NaN value
        inps.mask *= ~np.isnan(inps.phase)
        # set all masked out pixel to NaN
        inps.phase[inps.mask==0] = np.nan
    else:
        raise ValueError("input file not support yet: {}".format(k))
    print('number of pixels: {}'.format(np.sum(inps.mask)))

    # change reference point
    if inps.ref_lalo:
        coord = ut.coordinate(inps.metadata)
        ref_lat, ref_lon = inps.ref_lalo
        ref_y, ref_x = coord.geo2radar(ref_lat, ref_lon)[0:2]
        # update data
        inps.phase -= inps.phase[ref_y, ref_x]
        # update metadata
        inps.metadata['REF_LAT'] = ref_lat
        inps.metadata['REF_LON'] = ref_lon
        inps.metadata['REF_Y'] = ref_y
        inps.metadata['REF_X'] = ref_x

    # read geometry
    inps.lat, inps.lon = ut.get_lat_lon(inps.metadata)
    inps.inc_angle = readfile.read(inps.geom_file, datasetName='incidenceAngle')[0]
    inps.head_angle = np.ones(inps.inc_angle.shape, dtype=np.float32) * float(inps.metadata['HEADING'])
    inps.height = readfile.read(inps.geom_file, datasetName='height')[0]

    # convert the height of ellipsoid to geoid (mean sea level)
    # ref: https://github.com/vandry/geoidheight
    if inps.ellipsoid2geoid:
        # import geoid module
        try:
            import geoid
        except:
            raise ImportError('Can not import geoidheight!')

        # calculate offset and correct height
        egm_file = os.path.join(os.path.dirname(geoid.__file__), 'geoids/egm2008-1.pgm')
        gh_obj = geoid.GeoidHeight(egm_file)
        h_offset = gh_obj.get(lat=np.nanmean(inps.lat), lon=np.nanmean(inps.lon))
        inps.height -= h_offset

        # print message
        msg = 'convert height from ellipsoid to geoid'
        msg += '\n\tby subtracting a constant offset of {:.2f} m'.format(h_offset)
        print(msg)

    inps.lat[inps.mask==0] = np.nan
    inps.lon[inps.mask==0] = np.nan
    inps.inc_angle[inps.mask==0] = np.nan
    inps.head_angle[inps.mask==0] = np.nan
    inps.height[inps.mask==0] = np.nan

    # output filename
    if not inps.outfile:
        proj_name = sensor.project_name2sensor_name(inps.file)[1]
        if not proj_name:
            raise ValueError('No custom/auto output filename found.')
        inps.outfile = '{}_{}.mat'.format(proj_name, inps.metadata['DATE12'])

        if not inps.outdir:
            inps.outdir = os.path.dirname(inps.file)
        inps.outfile = os.path.join(inps.outdir, inps.outfile)
    inps.outfile = os.path.abspath(inps.outfile)
    return
Пример #29
0
                    transparent=True,
                    dpi=fig_dpi)
    # plt.show()

    # Backup - Plot Velocity with POI displacement timeseries

    # read ts data
    # load coordinates of observed wells
    # ll = pd.read_csv('/scratch/hpham/insar/insar_pahrump/GPS_points_PV1.csv') # only gps sta
    #ll = pd.read_csv('/scratch/hpham/insar/insar_pahrump/GPS_points_PV1_full.csv') #
    print(f'Reading ifile_loc {ifile_loc} \n')
    ll = pd.read_csv(ifile_loc)

    obj = timeseries(ts_file)
    obj.open()
    dates = ptime.date_list2vector(obj.dateList)[0]
    df = pd.DataFrame({'Date': dates})
    for i in range(ll.shape[0]):
        cur_point = str(ll['Name'][i])
        lat, lon = ll['Latitude'][i], ll['Longitude'][i]
        print(f'\nName={cur_point}, lat={lat}, lon={lon}')
        y, x = coord.geo2radar(lat, lon)[0:2]
        print(f'x={x}, y={y}')
        print('y/x: {}/{}'.format(y, x))
        d_ts = np.squeeze(readfile.read(ts_file,
                                        box=(x, y, x + 1, y + 1))[0]) * 100.

        # d_ts = d_ts/
        #(Unw_Phase * wavelength in cm) / (-4 * PI * cos(rad(incident_angle)))
        # https://forum.step.esa.int/t/subswath-iw2-sentinel-1a/4322/4
        try:
Пример #30
0
def plot_rms_bar(ax,
                 date_list,
                 rms,
                 cutoff=3.,
                 font_size=12,
                 tick_year_num=1,
                 legend_loc='best',
                 disp_legend=True,
                 disp_side_plot=True,
                 disp_thres_text=False,
                 ylabel=r'Residual Phase $\hat \phi_{resid}$ RMS [mm]'):
    """ Bar plot Phase Residual RMS
    Parameters: ax : Axes object
                date_list : list of string in YYYYMMDD format
                rms    : 1D np.array of float for RMS value in mm
                cutoff : cutoff value of MAD outlier detection
                tick_year_num : int, number of years per major tick
                legend_loc : 'upper right' or (0.5, 0.5)
    Returns:    ax : Axes object
    """
    dates, datevector = ptime.date_list2vector(date_list)
    dates = np.array(dates)
    try:
        bar_width = min(ut.most_common(np.diff(dates).tolist(), k=2)) * 3 / 4
    except:
        bar_width = np.min(np.diff(dates).tolist()) * 3 / 4
    rms = np.array(rms)

    # Plot all dates
    ax.bar(dates, rms, bar_width.days, color=pp.mplColors[0])

    # Plot reference date
    ref_idx = np.argmin(rms)
    ax.bar(dates[ref_idx],
           rms[ref_idx],
           bar_width.days,
           color=pp.mplColors[1],
           label='Reference date')

    # Plot exclude dates
    rms_threshold = ut.median_abs_deviation_threshold(rms,
                                                      center=0.,
                                                      cutoff=cutoff)
    ex_idx = rms > rms_threshold
    if not np.all(ex_idx == False):
        ax.bar(dates[ex_idx],
               rms[ex_idx],
               bar_width.days,
               color='darkgray',
               label='Exclude date')

    # Plot rms_threshold line
    (ax, xmin, xmax) = pp.auto_adjust_xaxis_date(ax,
                                                 datevector,
                                                 font_size,
                                                 every_year=tick_year_num)
    ax.plot(np.array([xmin, xmax]),
            np.array([rms_threshold, rms_threshold]),
            '--k',
            label='Median Abs Dev * {}'.format(cutoff))

    # axis format
    ax = pp.auto_adjust_yaxis(ax,
                              np.append(rms, rms_threshold),
                              font_size,
                              ymin=0.0)
    ax.set_xlabel('Time [years]', fontsize=font_size)
    ax.set_ylabel(ylabel, fontsize=font_size)
    ax.tick_params(which='both',
                   direction='in',
                   labelsize=font_size,
                   bottom=True,
                   top=True,
                   left=True,
                   right=True)

    # 2nd axes for circles
    if disp_side_plot:
        divider = make_axes_locatable(ax)
        ax2 = divider.append_axes("right", "10%", pad="2%")
        ax2.plot(np.ones(rms.shape, np.float32) * 0.5,
                 rms,
                 'o',
                 mfc='none',
                 color=pp.mplColors[0])
        ax2.plot(np.ones(rms.shape, np.float32)[ref_idx] * 0.5,
                 rms[ref_idx],
                 'o',
                 mfc='none',
                 color=pp.mplColors[1])
        if not np.all(ex_idx == False):
            ax2.plot(np.ones(rms.shape, np.float32)[ex_idx] * 0.5,
                     rms[ex_idx],
                     'o',
                     mfc='none',
                     color='darkgray')
        ax2.plot(np.array([0, 1]), np.array([rms_threshold, rms_threshold]),
                 '--k')

        ax2.set_ylim(ax.get_ylim())
        ax2.set_xlim([0, 1])
        ax2.tick_params(which='both',
                        direction='in',
                        labelsize=font_size,
                        bottom=True,
                        top=True,
                        left=True,
                        right=True)
        ax2.get_xaxis().set_ticks([])
        ax2.get_yaxis().set_ticklabels([])

    if disp_legend:
        ax.legend(loc=legend_loc, frameon=False, fontsize=font_size)

    # rms_threshold text
    if disp_thres_text:
        ymin, ymax = ax.get_ylim()
        yoff = (ymax - ymin) * 0.1
        if (rms_threshold - ymin) > 0.5 * (ymax - ymin):
            yoff *= -1.
        ax.annotate('Median Abs Dev * {}'.format(cutoff),
                    xy=(xmin + (xmax - xmin) * 0.05, rms_threshold + yoff),
                    color='k',
                    xycoords='data',
                    fontsize=font_size)
    return ax
Пример #31
0
def vtec2iono_ramp_timeseries(date_list,
                              vtec_list,
                              geom_file,
                              iono_file,
                              sub_tec_ratio=None,
                              ds_dict_ext=None,
                              update_mode=True):
    """Convert zenith TEC to 2D slant range delay (ramp due to the incidence angle variation)
    and write to HDF5 time-series file.

    Parameters: date_list   - list of str, dates in YYYYMMDD format
                vtec_list   - list of float32, zenith TEC in TECU
                geom_file   - str, path of the geometry file including incidenceAngle data
                iono_file   - str, path of output iono ramp time-series file
                update_mode - bool,
                ds_dict_ext - dict, extra dictionary of dataset to be saved into the HDF5 file.
    Returns:    iono_file   - str, path of output iono ramp time-series file
    """
    top_perc_file = os.path.join(os.path.dirname(mintpy.__file__), 'data',
                                 'top_tec_perc_s1.txt')

    # prepare geometry
    (iono_inc_angle, iono_lat, iono_lon,
     iono_height) = iono.prep_geometry_iono(geom_file, print_msg=True)

    # prepare date/time
    num_date = len(date_list)
    if len(vtec_list) != num_date:
        msg = 'Input tec_list and date_list have different size!'
        msg += '\nFor acquisitions without TEC data, set it to NaN.'
        raise ValueError(msg)

    meta = readfile.read_attribute(geom_file)
    length = int(meta['LENGTH'])
    width = int(meta['WIDTH'])
    freq = SPEED_OF_LIGHT / float(meta['WAVELENGTH'])

    # Note: Scaling gives slightly better RMSE for SenD but much worse RMSE for SenA and Alos2
    # thus this is not used by default.
    if sub_tec_ratio is not None:
        if ut.is_number(sub_tec_ratio):
            print('multiply VTEC by {}'.format(sub_tec_ratio))
            vtec_list = (np.array(vtec_list).flatten() *
                         float(sub_tec_ratio)).tolist()

        elif sub_tec_ratio.startswith('adap'):
            dates = ptime.date_list2vector(date_list)[0]
            ydays = np.array([x.timetuple().tm_yday for x in dates])
            fc = np.loadtxt(top_perc_file, dtype=bytes).astype(np.float32)
            print(
                'multiply VTEC adaptively based on the day of the year from: {}'
                .format(top_perc_file))
            sub_perc = fc[:, 2][np.array(ydays)]
            vtec_list = (np.array(vtec_list).flatten() * sub_perc).tolist()

    # loop to calculate the range delay (ramp)
    print('calculating ionospheric phase ramp time-series from TEC ...')
    ts_ramp = np.zeros((num_date, length, width), dtype=np.float32)
    prog_bar = ptime.progressBar(maxValue=num_date)
    for i, date_str in enumerate(date_list):
        ts_ramp[i, :, :] = iono.vtec2range_delay(
            vtec_list[i],
            inc_angle=iono_inc_angle,
            freq=freq,
        )
        prog_bar.update(i + 1, suffix=date_str)
    prog_bar.close()

    ## output
    # prepare metadata
    meta['FILE_TYPE'] = 'timeseries'
    meta['UNIT'] = 'm'
    meta['IONO_LAT'] = iono_lat
    meta['IONO_LON'] = iono_lon
    meta['IONO_HEIGHT'] = iono_height
    meta['IONO_INCIDENCE_ANGLE'] = np.nanmean(iono_inc_angle)
    # absolute delay without double reference
    for key in ['REF_X', 'REF_Y', 'REF_LAT', 'REF_LON', 'REF_DATE']:
        if key in meta.keys():
            meta.pop(key)

    # prepare data matrix
    ds_dict = {}
    ds_dict['date'] = np.array(date_list, dtype=np.string_)
    ds_dict['vtec'] = np.array(vtec_list, dtype=np.float32)
    ds_dict['timeseries'] = ts_ramp

    # add the extra dataset if specified, e.g. vtec_gim, vtec_top, vtec_sub
    if ds_dict_ext is not None:
        ds_names = ds_dict.keys()
        for ds_name, ds_val in ds_dict_ext.items():
            if ds_name not in ds_names:
                ds_dict[ds_name] = ds_val

    # write to disk
    writefile.write(ds_dict, iono_file, metadata=meta)

    return iono_file
Пример #32
0
def plot_rms_bar(ax, date_list, rms, cutoff=3., font_size=12, 
                 tick_year_num=1, legend_loc='best',
                 disp_legend=True, disp_side_plot=True, disp_thres_text=True,
                 ylabel=r'Residual Phase $\hat \phi_{resid}$ RMS [mm]'):
    """ Bar plot Phase Residual RMS
    Parameters: ax : Axes object
                date_list : list of string in YYYYMMDD format
                rms    : 1D np.array of float for RMS value in mm
                cutoff : cutoff value of MAD outlier detection
                tick_year_num : int, number of years per major tick
                legend_loc : 'upper right' or (0.5, 0.5)
    Returns:    ax : Axes object
    """
    dates, datevector = ptime.date_list2vector(date_list)
    dates = np.array(dates)
    try:
        bar_width = min(ut.most_common(np.diff(dates).tolist(), k=2))*3/4
    except:
        bar_width = np.min(np.diff(dates).tolist())*3/4
    rms = np.array(rms)

    # Plot all dates
    ax.bar(dates, rms, bar_width.days, color=pp.mplColors[0])

    # Plot reference date
    ref_idx = np.argmin(rms)
    ax.bar(dates[ref_idx], rms[ref_idx], bar_width.days, color=pp.mplColors[1], label='Reference date')

    # Plot exclude dates
    rms_threshold = ut.median_abs_deviation_threshold(rms, center=0., cutoff=cutoff)
    ex_idx = rms > rms_threshold
    if not np.all(ex_idx==False):
        ax.bar(dates[ex_idx], rms[ex_idx], bar_width.days, color='darkgray', label='Exclude date')

    # Plot rms_threshold line
    (ax, xmin, xmax) = pp.auto_adjust_xaxis_date(ax, datevector, font_size, every_year=tick_year_num)
    ax.plot(np.array([xmin, xmax]), np.array([rms_threshold, rms_threshold]), '--k', label='RMS threshold')

    # axis format
    ax = pp.auto_adjust_yaxis(ax, np.append(rms, rms_threshold), font_size, ymin=0.0)
    ax.set_xlabel('Time [years]', fontsize=font_size)
    ax.set_ylabel(ylabel, fontsize=font_size)
    ax.tick_params(which='both', direction='in', labelsize=font_size,
                   bottom=True, top=True, left=True, right=True)

    # 2nd axes for circles
    if disp_side_plot:
        divider = make_axes_locatable(ax)
        ax2 = divider.append_axes("right", "10%", pad="2%")
        ax2.plot(np.ones(rms.shape, np.float32) * 0.5, rms, 'o', mfc='none', color=pp.mplColors[0])
        ax2.plot(np.ones(rms.shape, np.float32)[ref_idx] * 0.5, rms[ref_idx], 'o', mfc='none', color=pp.mplColors[1])
        if not np.all(ex_idx==False):
            ax2.plot(np.ones(rms.shape, np.float32)[ex_idx] * 0.5, rms[ex_idx], 'o', mfc='none', color='darkgray')
        ax2.plot(np.array([0, 1]), np.array([rms_threshold, rms_threshold]), '--k')

        ax2.set_ylim(ax.get_ylim())
        ax2.set_xlim([0, 1])
        ax2.tick_params(which='both', direction='in', labelsize=font_size,
                        bottom=True, top=True, left=True, right=True)
        ax2.get_xaxis().set_ticks([])
        ax2.get_yaxis().set_ticklabels([])

    if disp_legend:
        ax.legend(loc=legend_loc, frameon=False, fontsize=font_size)

    # rms_threshold text
    if disp_thres_text:
        ymin, ymax = ax.get_ylim()
        yoff = (ymax - ymin) * 0.1
        if (rms_threshold - ymin) > 0.5 * (ymax - ymin):
            yoff *= -1.
        ax.annotate('Median Abs Dev * {}'.format(cutoff),
                    xy=(xmin + (xmax-xmin)*0.05, rms_threshold + yoff ),
                    color='k', xycoords='data', fontsize=font_size)
    return ax
Пример #33
0
def read_data(inps):
    # metadata
    atr = readfile.read_attribute(inps.file)

    if 'WAVELENGTH' in atr.keys():
        range2phase = -4 * np.pi / float(atr['WAVELENGTH'])

    # change reference pixel
    if inps.ref_lalo:
        if 'Y_FIRST' in atr.keys():
            coord = ut.coordinate(atr)
            ref_y, ref_x = coord.geo2radar(inps.ref_lalo[0],
                                           inps.ref_lalo[1])[0:2]
            inps.ref_yx = [ref_y, ref_x]
        else:
            raise ValueError(
                "input file is not geocoded --> reference point in lat/lon is NOT support"
            )

    if inps.ref_yx:
        atr['REF_Y'] = inps.ref_yx[0]
        atr['REF_X'] = inps.ref_yx[1]
        if 'Y_FIRST' in atr.keys():
            coord = ut.coordinate(atr)
            ref_lat, ref_lon = coord.radar2geo(inps.ref_yx[0],
                                               inps.ref_yx[1])[0:2]
            atr['REF_LAT'] = ref_lat
            atr['REF_LON'] = ref_lon
        print('change reference point to y/x: {}'.format(inps.ref_yx))

    # various file types
    print('read {} from file {}'.format(inps.dset, inps.file))
    k = atr['FILE_TYPE']
    if k == 'velocity':
        # read/prepare data
        data = readfile.read(inps.file)[0]

        # velocity to displacement
        print('convert velocity to displacement for {}'.format(atr['DATE12']))
        date1, date2 = atr['DATE12'].split('_')
        dt1, dt2 = ptime.date_list2vector([date1, date2])[0]
        data *= (dt2 - dt1).days / 365.25

        # displacement to phase
        print('convert displacement to phase in radian')
        data *= range2phase

        if inps.ref_yx:
            data -= data[inps.ref_yx[0], inps.ref_yx[1]]

        # metadata
        atr['FILE_TYPE'] = '.unw'
        atr['UNIT'] = 'radian'

        # output filename
        if not inps.outfile:
            inps.outfile = os.path.join(os.path.dirname(inps.file),
                                        '{}.unw'.format(atr['DATE12']))

    elif k == 'timeseries':
        # date1 and date2
        if '_' in inps.dset:
            date1, date2 = ptime.yyyymmdd(inps.dset.split('_'))
        else:
            date1 = atr['REF_DATE']
            date2 = ptime.yyyymmdd(inps.dset)

        # read/prepare data
        data = readfile.read(inps.file, datasetName=date2)[0]
        data -= readfile.read(inps.file, datasetName=date1)[0]
        print('converting range to phase')
        data *= range2phase
        if inps.ref_yx:
            data -= data[inps.ref_yx[0], inps.ref_yx[1]]

        # metadata
        atr['DATE'] = date1[2:8]
        atr['DATE12'] = '{}-{}'.format(date1[2:8], date2[2:8])
        atr['FILE_TYPE'] = '.unw'
        atr['UNIT'] = 'radian'

        # output filename
        if not inps.outfile:
            inps.outfile = '{}_{}.unw'.format(date1, date2)
            if inps.file.startswith('geo_'):
                inps.outfile = 'geo_' + inps.outfile

    elif k == 'HDFEOS':
        dname = inps.dset.split('-')[0]

        # date1 and date2
        if dname == 'displacement':
            if '-' in inps.dset:
                suffix = inps.dset.split('-')[1]
                if '_' in suffix:
                    date1, date2 = ptime.yyyymmdd(suffix.split('_'))
                else:
                    date1 = atr['REF_DATE']
                    date2 = ptime.yyyymmdd(suffix)
            else:
                raise ValueError(
                    "No '-' in input dataset! It is required for {}".format(
                        dname))
        else:
            date_list = HDFEOS(inps.file).get_date_list()
            date1 = date_list[0]
            date2 = date_list[-1]
        date12 = '{}_{}'.format(date1, date2)

        # read / prepare data
        slice_list = readfile.get_slice_list(inps.file)
        if 'displacement' in inps.dset:
            # read/prepare data
            slice_name1 = view.check_dataset_input(
                slice_list, '{}-{}'.format(dname, date1))[0][0]
            slice_name2 = view.check_dataset_input(
                slice_list, '{}-{}'.format(dname, date2))[0][0]
            data = readfile.read(inps.file, datasetName=slice_name1)[0]
            data -= readfile.read(inps.file, datasetName=slice_name2)[0]
            print('converting range to phase')
            data *= range2phase
            if inps.ref_yx:
                data -= data[inps.ref_yx[0], inps.ref_yx[1]]
        else:
            slice_name = view.check_dataset_input(slice_list, inps.dset)[0][0]
            data = readfile.read(inps.file, datasetName=slice_name)[0]

        # metadata
        atr['DATE'] = date1[2:8]
        atr['DATE12'] = '{}-{}'.format(date1[2:8], date2[2:8])
        if dname == 'displacement':
            atr['FILE_TYPE'] = '.unw'
            atr['UNIT'] = 'radian'
        elif 'coherence' in dname.lower():
            atr['FILE_TYPE'] = '.cor'
            atr['UNIT'] = '1'
        elif dname == 'height':
            atr['FILE_TYPE'] = '.dem'
            atr['DATA_TYPE'] = 'int16'
        else:
            raise ValueError('unrecognized input dataset type: {}'.format(
                inps.dset))

        # output filename
        if not inps.outfile:
            inps.outfile = '{}{}'.format(date12, atr['FILE_TYPE'])

    elif k == 'ifgramStack':
        dname, date12 = inps.dset.split('-')
        date1, date2 = date12.split('_')

        # read / prepare data
        data = readfile.read(inps.file, datasetName=inps.dset)[0]
        if dname.startswith('unwrapPhase'):
            if 'REF_X' in atr.keys():
                data -= data[int(atr['REF_Y']), int(atr['REF_X'])]
                print('consider reference pixel in y/x: ({}, {})'.format(
                    atr['REF_Y'], atr['REF_X']))
            else:
                print('No REF_Y/X found.')

        # metadata
        atr['DATE'] = date1[2:8]
        atr['DATE12'] = '{}-{}'.format(date1[2:8], date2[2:8])
        if dname.startswith('unwrapPhase'):
            atr['FILE_TYPE'] = '.unw'
            atr['UNIT'] = 'radian'
        elif dname == 'coherence':
            atr['FILE_TYPE'] = '.cor'
            atr['UNIT'] = '1'
        elif dname == 'wrapPhase':
            atr['FILE_TYPE'] = '.int'
            atr['UNIT'] = 'radian'
        elif dname == 'connectComponent':
            atr['FILE_TYPE'] = '.conncomp'
            atr['UNIT'] = '1'
            atr['DATA_TYPE'] = 'byte'
        else:
            raise ValueError('unrecognized dataset type: {}'.format(inps.dset))

        # output filename
        if not inps.outfile:
            inps.outfile = '{}{}'.format(date12, atr['FILE_TYPE'])
            if inps.file.startswith('geo_'):
                inps.outfile = 'geo_' + inps.outfile

    else:
        # read data
        data = readfile.read(inps.file, datasetName=inps.dset)[0]

        if inps.outfile:
            fext = os.path.splitext(inps.outfile)[1]
            atr['FILE_TYPE'] = fext
        else:
            # metadata
            if 'coherence' in k.lower():
                atr['FILE_TYPE'] = '.cor'
            elif k in ['mask']:
                atr['FILE_TYPE'] = '.msk'
            elif k in ['geometry'] and inps.dset == 'height':
                if 'Y_FIRST' in atr.keys():
                    atr['FILE_TYPE'] = '.dem'
                else:
                    atr['FILE_TYPE'] = '.hgt'
                atr['UNIT'] = 'm'
            else:
                atr['FILE_TYPE'] = '.unw'

            inps.outfile = '{}{}'.format(
                os.path.splitext(inps.file)[0], atr['FILE_TYPE'])

    # mask
    if inps.mask_file:
        for m_file in inps.mask_file:
            print('mask data based on input file: {}'.format(m_file))
            mask = readfile.read(m_file)[0]
            mask *= ~np.isnan(data)
            data[mask == 0] = np.nan

    # get rid of starting . if output as hdf5 file
    if inps.outfile.endswith('.h5'):
        if atr['FILE_TYPE'].startswith('.'):
            atr['FILE_TYPE'] = atr['FILE_TYPE'][1:]

    atr['PROCESSOR'] = 'roipac'
    return data, atr, inps.outfile