Пример #1
0
def compute_lincor_model(hdu, pix_x, pix_y, ndegree=3):
    """
    Compute the lineary correction model

    Parameters
    ----------
    hdu : astropy.fits.hdu
        header data unit

    pix_x, pix_y: int
        x, y pixel coordiates

    Returns
    -------
    cormod : astropy.modeling.model
        model the linearity correction with x = measured DN
    """
    # for fitting
    x = []
    y = []

    # get all the diffs
    for k in range(nints):
        gnum, ydata = get_ramp(hdu, pix_x, pix_y, k)
        ggnum, gdata, aveDN, diffDN = get_good_ramp(gnum, ydata)

        # accumulate data
        x.append(aveDN)
        y.append(diffDN)

        # find the ramp that spans the largest range of DN
        # and save some info -> needed for creating the correction
        # if (gdata.max() - gdata.min()) > mm_delta:
        #    mm_delta = gdata.max() - gdata.min()
        if k == 3:
            max_ramp_k = k
            # max_ramp_gdata = gdata
            max_ramp_aveDN = aveDN

    # fit the aveDN versus diffDN combined data from all integrations
    x = np.concatenate(x)
    y = np.concatenate(y)
    mod = fit_diffs(x, y, ndegree=ndegree - 1)

    # determine the startDN for all ramps (all not actually needed)
    startDNvals = np.arange(0.0, 20000.0, 200.0)
    chival = np.zeros((nints, len(startDNvals)))
    ints = range(nints)
    for i, startDN in enumerate(startDNvals):
        (DN_exp, cor, cor_mod) = calc_lincor(mod[1],
                                             max_ramp_aveDN,
                                             startDN,
                                             ndegree=ndegree)
        for k in ints:
            gnum, ydata = get_ramp(hdu, pix_x, pix_y, k)
            ggnum, gdata, aveDN, diffDN = get_good_ramp(gnum, ydata)
            # correct the ramps
            ycor = cor_mod(gdata)
            gdata_cor = gdata * ycor
            # calculate the chisqr for each integration set of differences
            # from the expected flat line
            diffDN = np.diff(gdata_cor)
            aveDN = 0.5 * (gdata[:-1] + gdata[1:])
            cindxs, = np.where(aveDN > 10000.0)
            chival[k, i] = np.sum((diffDN[aveDN > 15000.0] - mod[1].c0)**2)

    minindx = np.zeros((nints), dtype=int)
    for k in ints[1:]:
        minindx[k] = np.argmin(chival[k, :])

    # only use the startDN from one ramp
    startDN = startDNvals[minindx[max_ramp_k]]

    # get the correction
    (DN_exp, cor, cor_mod) = calc_lincor(mod[1], max_ramp_aveDN, startDN)

    return cor_mod
        pix_x, pix_y = args.pixel
        ngrps = hdu[0].header["NGROUPS"]
        nints = min([10, hdu[0].header["NINT"]])
        nrej = args.nrej

        # for fitting
        x = []
        y = []

        # for plotting
        pcol = plt.cm.jet(np.linspace(0, 1, nints))

        # plot all integrations folded
        for k in range(nints):
            gnum, ydata = get_ramp(hdu[0], pix_x, pix_y, k)
            ggnum, gdata, aveDN, diffDN = get_good_ramp(gnum, ydata)

            sax[0, z].plot(gnum, ydata, label=f"Int #{k+1}", color=pcol[k])

            # plot the 2pt diffs versus average DN
            # ax[1].plot(aveDN, diffDN, label=f"Int #{k+1}", color=pcol[k])

            # if k == 0:
            #    ax[1].set_ylim(0.9 * min(diffDN), 1.4 * max(diffDN))

            # accumulate data for fitting
            x.append(aveDN)
            y.append(diffDN)

        if z == 0:
            # fit the aveDN versus diffDN combined data from all integrations
Пример #3
0
    # for fitting
    x = []
    y = []

    # for plotting
    pcol = ["b", "g", "r", "c", "y", "b", "g", "r", "c", "y"]

    # plot all integrations folded
    mm_delta = 0.0
    max_ramp_k = -1
    rampoffval = rampoffvals[0]
    # print("# ints = ", nints)
    for k in range(nints):
        gnum, ydata = get_ramp(hdu[0], pix_x, pix_y, k, rampoffval=rampoffvals[0])
        ggnum, gdata, aveDN, diffDN = get_good_ramp(gnum, ydata)

        ax[0].plot(gnum, ydata, label=f"Int #{k+1}", color=pcol[k])

        # plot the 2pt diffs
        ax[1].plot(ggnum[:-1], diffDN, label=f"Int #{k+1}", color=pcol[k])

        # plot the 2pt diffs versus average DN
        ax[2].plot(aveDN, diffDN, label=f"Int #{k+1}", color=pcol[k])

        if k == 0:
            ax[1].set_ylim(0.9 * min(diffDN), 1.1 * max(diffDN))
            ax[2].set_ylim(0.9 * min(diffDN), 1.1 * max(diffDN))

        # accumulate data for later plotting
        x.append(aveDN)