Пример #1
0
def extract(model, filepath, vid):
    """Extract features by inception_v3."""
    # data loader for frames in ingle video
    data_loader = get_dataloader(dataset="VideoFrame",
                                 path=filepath,
                                 num_frames=cfg.num_frames,
                                 batch_size=cfg.batch_size)
    # extract features by inception_v3
    feats = None
    for step, frames in enumerate(data_loader):
        print("--> extract features [{}/{}]".format(step + 1,
                                                    len(data_loader)))
        feat = model(make_variable(frames))
        feats = concat_feat_var(feats, feat.data.cpu())

    print("--> save feats to {}".format(
        cfg.inception_v3_feats_path.format(vid)))
    torch.save(feats, cfg.inception_v3_feats_path.format(vid))
    print("--> delete original video file: {}".format(filepath))
    os.remove(filepath)
Пример #2
0
    model = make_cuda(
        inception_v3(pretrained=True, transform_input=True, extract_feat=True))
    model.eval()

    # get vid list
    video_list = os.listdir(cfg.video_root)
    video_list = [
        os.path.splitext(v)[0] for v in video_list
        if os.path.splitext(v)[1] in cfg.video_ext
    ]

    # extract features by inception_v3
    for idx, vid in enumerate(video_list):
        if os.path.exists(cfg.inception_v3_feats_path.format(vid)):
            print("skip {}".format(vid))
        else:
            print("extract feature from {} [{}/{}]".format(
                vid, idx + 1, len(video_list)))
            # data loader for frames decoded from several videos
            data_loader = get_dataloader(dataset="FrameImage",
                                         path=cfg.frame_root,
                                         batch_size=cfg.batch_size,
                                         vid=vid)
            feats = None
            for step, frames in enumerate(data_loader):
                print("--> step [{}/{}]".format(step + 1, len(data_loader)))
                feat = model(make_variable(frames))
                feats = concat_feat_var(feats, feat.data.cpu())

            torch.save(feats, cfg.inception_v3_feats_path.format(vid))
Пример #3
0
        inception_v3_feats = torch.load(
            cfg.inception_v3_feats_path.format("total"))

    else:
        # get inception_v3 feats list
        feats_list = os.listdir(cfg.inception_v3_feats_root)
        feats_list = [
            v for v in feats_list
            if os.path.splitext(v)[1] in cfg.inception_v3_feats_ext
        ]

        # load inception_v3 feats
        inception_v3_feats = None
        for step, feat_file in enumerate(feats_list):
            print("loadingg inception_v3 from {} [{}/{}]".format(
                feat_file, step + 1, len(feats_list)))
            feat_path = os.path.join(cfg.inception_v3_feats_root, feat_file)
            feat = torch.load(feat_path)
            inception_v3_feats = concat_feat_var(inception_v3_feats, feat)

        # save all feats into single file
        torch.save(inception_v3_feats,
                   cfg.inception_v3_feats_path.format("total"))

    # train PCA
    X = inception_v3_feats.numpy()
    pca.fit(X)

    # sabe PCA params
    pca.save_params(filepath=cfg.pca_model)