parser.set_defaults(log=False) args = parser.parse_args() print('Config path: {}'.format(args.config)) print('Model config path: {}'.format(args.model_config)) if args.weights is None: w = 'RANDOM WEIGHTS' else: w = args.weights print('Weights: {}'.format(w)) print('Debug mode: {}'.format(args.debug)) print('Visualize: {}'.format(args.visualize)) print('Log search results: {}'.format(args.log)) print('') params = MinkLocParams(args.config, args.model_config) params.print() if torch.cuda.is_available(): device = "cuda" else: device = "cpu" print('Device: {}'.format(device)) model = model_factory(params) if args.weights is not None: assert os.path.exists( args.weights), 'Cannot open network weights: {}'.format( args.weights) print('Loading weights: {}'.format(args.weights)) model.load_state_dict(torch.load(args.weights, map_location=device))
# Default downsampling factor 1280x960 images to 320x240 parser.add_argument('--downsample', type=int, default=4, help='Image downsampling factor') args = parser.parse_args() print('Config path: {}'.format(args.config)) print('Oxford RobotCar root folder: {}'.format(args.oxford_root)) print('Camera: {}'.format(args.camera)) print('Image downsampling factor: {}'.format(args.downsample)) nn_threshold = 1000 # Nearest neighbour threshold in miliseconds k = 20 # Number of nearest neighbour images to find for each LiDAR scan ext = '.png' # Image extension print('Number of nearest images for each scan (k): {}'.format(k)) print('') params = MinkLocParams(args.config, model_params_path=None) print(f'Parameters from config file: {args.config}') print(f"Output folder for downsampled images (image_path): {params.image_path}") print(f"Dataset folder (point clouds): {params.dataset_folder}") print(f"Evaluation sets - query split: {params.eval_query_files}") print(f"Evaluation sets - database split: {params.eval_database_files}") print('') # Create output path out_path = params.image_path if not os.path.exists(out_path): os.mkdir(out_path) assert os.path.exists(out_path), 'Cannot create output directory: {}'.format(out_path) # Index LiDAR scans in the dataset