Пример #1
0
def load_trainval(main_dict):
    path_datasets = "datasets"
    path_transforms = 'addons/transforms.py'
    dataset_dict = ms.get_module_classes(path_datasets)
    transform_dict = ms.get_functions(path_transforms)
    dataset_name = main_dict["dataset_name"]
    train_set, val_set = ms.load_trainval({"dataset_name":dataset_name,
                               "path_datasets":path_datasets,
                               "trainTransformer":"Tr_WTP_NoFlip",
                               "testTransformer":"Te_WTP",
                               "dataset_options":{},
                               "dataset_dict":dataset_dict,
                               "transform_dict":transform_dict})

    annList_path = val_set.path + "/annotations/{}_gt_annList.json".format(val_set.split)
    val_set.annList_path = annList_path

    return train_set, val_set
Пример #2
0
def pascal2cocoformat():
    dataset = ms.load_trainval({"dataset_name": "VOC"})
    fname = "/mnt/datasets/public/issam/VOCdevkit/annotations/"
    fname += "instances_val2012.json"

    tmp = ms.load_json("/mnt/datasets/public/issam/"
                       "VOCdevkit/annotations/pascal_val2012.json")

    ann_json = {}
    ann_json["categories"] = tmp["categories"]
    ann_json["type"] = "instances"

    # Images
    imageList = []
    annList = []
    id = 1
    for i in range(len(dataset)):
        print("{}/{}".format(i, len(dataset)))
        batch = dataset[i]
        image_id = int(batch["name"])

        height, width = batch["images"].shape[-2:]
        imageList += [{
            "file_name": batch["name"] + ".jpg",
            "height": height,
            "width": width,
            "id": image_id
        }]

        maskObjects = batch["maskObjects"]
        maskClasses = batch["maskClasses"]
        n_objects = maskObjects[maskObjects != 255].max()
        for obj_id in range(1, n_objects + 1):
            if obj_id == 0:
                continue

            binmask = (maskObjects == obj_id)
            segmentation = maskUtils.encode(np.asfortranarray(ms.t2n(binmask)))
            segmentation["counts"] = segmentation["counts"].decode("utf-8")
            uniques = (binmask.long() * maskClasses).unique()
            uniques = uniques[uniques != 0]
            assert len(uniques) == 1

            category_id = uniques[0].item()

            annList += [{
                "segmentation": segmentation,
                "iscrowd": 0,
                # "bbox":maskUtils.toBbox(segmentation).tolist(),
                "area": int(maskUtils.area(segmentation)),
                "id": id,
                "image_id": image_id,
                "category_id": category_id
            }]
            id += 1

    ann_json["annotations"] = annList
    ann_json["images"] = imageList

    ms.save_json(fname, ann_json)

    anns = ms.load_json(fname)
    fname_dummy = fname.replace(".json", "_best.json")
    annList = anns["annotations"]
    for a in annList:
        a["score"] = 1

    ms.save_json(fname_dummy, annList)
Пример #3
0
def main(main_dict, train_only=False):

    ms.print_welcome(main_dict)

    # EXTRACT VARIABLES
    reset = main_dict["reset"]
    epochs = main_dict["epochs"] = 100
    batch_size = main_dict["batch_size"]
    sampler_name = main_dict["sampler_name"]
    verbose = main_dict["verbose"]
    loss_name = main_dict["loss_name"]
    metric_name = main_dict["metric_name"]
    metric_class = main_dict["metric_dict"][metric_name]
    loss_function = main_dict["loss_dict"][loss_name]
    predictList = main_dict["predictList"]

    # Assert everything is available
    ## Sharp proposals
    ## LCFCN points
    ## gt_annDict

    # Dataset
    train_set, val_set = ms.load_trainval(main_dict)
    train_set[0]

    # Model

    if reset == "reset" or not ms.model_exists(main_dict):
        model, opt, history = ms.init_model_and_opt(main_dict, train_set)
        print("TRAINING FROM SCRATCH EPOCH: %d/%d" %
              (history["epoch"], epochs))
    else:
        model, opt, history = ms.load_latest_model_and_opt(
            main_dict, train_set)
        print("RESUMING EPOCH %d/%d" % (history["epoch"], epochs))

    # Get Dataloader
    trainloader = ms.get_dataloader(
        dataset=train_set,
        batch_size=batch_size,
        sampler_class=main_dict["sampler_dict"][sampler_name])

    # SAVE HISTORY
    history["epoch_size"] = len(trainloader)

    if "trained_batch_names" in history:
        model.trained_batch_names = set(history["trained_batch_names"])

    ms.save_pkl(main_dict["path_history"], history)

    # START TRAINING
    start_epoch = history["epoch"]
    predict_name = predictList[0]

    for epoch in range(start_epoch + 1, epochs):
        # %%%%%%%%%%% 1. Training PHASE %%%%%%%%%%%%"
        history = training_phase(history, main_dict, model, trainloader, opt,
                                 loss_function, verbose, epoch)

        # %%%%%%%%%%% 2. VALIDATION PHASE %%%%%%%%%%%%"
        if (epoch % 5) == 0:
            history = validation_phase_mAP(history, main_dict, model, val_set,
                                           predict_name, epoch)

        ms.save_pkl(main_dict["path_history"], history)
Пример #4
0
def validate(main_dict, train_only=False):

    ms.print_welcome(main_dict)

    # EXTRACT VARIABLES
    reset = main_dict["reset"]
    epochs = main_dict["epochs"]
    batch_size = main_dict["batch_size"]
    sampler_name = main_dict["sampler_name"]
    verbose = main_dict["verbose"]
    loss_name = main_dict["loss_name"]
    metric_name = main_dict["metric_name"]
    epoch2val = main_dict["epoch2val"]
    val_batchsize = main_dict["val_batchsize"]
    metric_class = main_dict["metric_dict"][metric_name]
    loss_function = main_dict["loss_dict"][loss_name]
    predictList = main_dict["predictList"]

    # Assert everything is available
    ## Sharp proposals
    ## LCFCN points
    ## gt_annDict

    # Dataset
    train_set, val_set = ms.load_trainval(main_dict)
    train_set[0]

    # Model
    if reset == "reset" or not ms.model_exists(main_dict):
        model, opt, history = ms.init_model_and_opt(main_dict, train_set)
        print("TRAINING FROM SCRATCH EPOCH: %d/%d" %
              (history["epoch"], epochs))
    else:
        model, opt, history = ms.load_latest_model_and_opt(
            main_dict, train_set)
        print("RESUMING EPOCH %d/%d" % (history["epoch"], epochs))

    # Get Dataloader
    trainloader = ms.get_dataloader(
        dataset=train_set,
        batch_size=batch_size,
        sampler_class=main_dict["sampler_dict"][sampler_name])

    # SAVE HISTORY
    history["epoch_size"] = len(trainloader)

    if "trained_batch_names" in history:
        model.trained_batch_names = set(history["trained_batch_names"])

    # START TRAINING
    start_epoch = history["epoch"]
    predict_name = predictList[0]
    if len(history["val"]) == 0:
        last_validation = 1
    else:
        last_validation = history["val"][-1]["epoch"]

    for epoch in range(start_epoch + 1, epochs):
        import ipdb
        ipdb.set_trace()  # breakpoint a3e81a5d //

        # %%%%%%%%%%% 2. VALIDATION PHASE %%%%%%%%%%%%"
        validation_phase_mAP(history, main_dict, model, val_set, predict_name,
                             epoch)
        import ipdb
        ipdb.set_trace()  # breakpoint 952cb52f //
Пример #5
0
def debug(main_dict):
  #ud.debug_sheep(main_dict)

  loss_dict = main_dict["loss_dict"]
  metric_dict = main_dict["metric_dict"]

  metric_name = main_dict["metric_name"]
  metric_class = main_dict["metric_dict"][metric_name]
  loss_name = main_dict["loss_name"]
  batch_size = main_dict["batch_size"]

  ms.print_welcome(main_dict)
  train_set, val_set = ms.load_trainval(main_dict)



  #test_set = ms.load_test(main_dict)
  #  train_set, val_set = ms.load_trainval(main_dict)
  #batch=ms.get_batch(test_set, indices=[509]) 
  # batch=ms.get_batch(val_set, indices=[0, 4, 9]) 
  


  # b2 = um.get_batch(val_set, indices=[4]) 
  # ms.fitBatch(model, batch, loss_name="image_loss", opt=opt, epochs=100)
  # batch_train=ms.get_batch(val_set, indices=[15]) 
  # batch=ms.get_batch(val_set, indices=[15]) 

  # tr_batch=ms.get_batch(val_set, indices=[2]) 
  #batch=ms.get_batch(val_set, indices=[1,2,3,12,13,14,16,17,67,68,70])
  # batch=ms.get_batch(val_set,indices=[300])
  
  # ms.images(batch["images"], batch["points"],denorm=1,enlarge=1)
  # for i in range(len(val_set)):
  #   batch=ms.get_batch(val_set,indices=[i])
  #   sharp_proposals = prp.Sharp_class(batch)


  # sharp_proposals = prp.Sharp_class(batch)
  # pointList = bu.mask2pointList(batch["points"])["pointList"]
  # propDict = bu.pointList2propDict(pointList, sharp_proposals, thresh=0.5)
  # for i in range(len(train_set)):
  #   print(i)

  #   sharp_proposals = prp.Sharp_class(ms.get_batch(train_set,indices=[i]))
  # d2c.pascal2cocoformat(main_dict)
  # model, opt, _ = ms.init_model_and_opt(main_dict)
  # 
  # history = ms.load_history(main_dict)
  # print(pd.DataFrame(history["val"]))
  # print(pd.DataFrame(history["train"])[loss_name])
  model, opt, _ = ms.init_model_and_opt(main_dict)
  import ipdb; ipdb.set_trace()  # breakpoint b87b640d //
  
  batch = ms.get_batch(val_set, indices=[1]) 
  ms.visBlobs(model, batch, predict_method="BestDice")
  import ipdb; ipdb.set_trace()  # breakpoint a18a7b92 //
  plants.save_test_to_h5(main_dict)
  model = ms.load_best_model(main_dict)
  
  if 1:
    import train
    train.validation_phase_mIoU(ms.load_history(main_dict), main_dict, model, val_set, 
                                "BestDice", 0)
  
  test_set = ms.load_test(main_dict)
  batch = ms.get_batch(test_set, indices=[4]) 
  # model, opt, _ = ms.init_model_and_opt(main_dict)
  batch = ms.get_batch(val_set, indices=[4]) 
 

  ms.images(batch["images"], model.predict( batch , predict_method="BestDice", use_trans=1,
                                            sim_func=au.compute_dice)["blobs"], denorm=1)

  val_dict, pred_annList = au.validate(model, val_set, 
            predict_method="BestDice", 
            n_val=None, return_annList=True)
  
  model = ms.load_lcfcn(train_set, mode="lcfcn")
  val_dict, pred_annList = au.validate(model, val_set, 
            predict_method="BestDice", 
            n_val=None, return_annList=True)
  model = ms.load_best_model(main_dict)
  ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                opt=opt, epochs=10000, visualize=True)
  import ipdb; ipdb.set_trace()  # breakpoint 4e08c360 //
  
  if os.path.exists(main_dict["path_history"]):
    history = ms.load_history(main_dict)
    print("# Trained Images:", len(history["trained_batch_names"]), "/", len(train_set))
    print("# Epoch:", history["epoch"])
    # print(pd.DataFrame(history["val"]))
    # val_names = [ms.extract_fname(fname).replace(".jpg", "") for fname in val_set.img_names]
    
    # assert np.in1d(history["trained_batch_names"], val_names).sum() == 0


  import ipdb; ipdb.set_trace()  # breakpoint ef2ce16b //
  # print(pd.DataFrame(history["val"]))
  # model, opt, _ = ms.init_model_and_opt(main_dict)
  model = ms.load_best_model(main_dict)
  ms.visBlobs(model, batch, predict_method="BestDice")

  ms.images(batch["images"], au.annList2mask(model.predict(batch, 
      predict_method="loc")["annList"])["mask"], enlarge=1, denorm=1)

  ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                opt=opt, epochs=10000, visualize=True)
  
  ms.images(model, ms.get_batch(val_set, indices=[0]))
  model = ms.load_best_model(main_dict)
  model.extract_proposalMasks(ms.get_batch(train_set, indices=[1]))
  mask = model.visualize(ms.get_batch(val_set, indices=[1]) )
  img = ms.f2l(ms.t2n((ms.denormalize(batch["images"])))).squeeze()
  segments_slic = slic(img, n_segments=250, compactness=10, sigma=1)

  results = model.predict(batch, "ewr")
 
  ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                opt=opt, epochs=10000, visualize=True)

  model = ms.load_best_model(main_dict)
  model.visualize( ms.get_batch(val_set, indices=[0]))
  ms.visBlobs(model, ms.get_batch(val_set, indices=[0]) , with_void=True)
 
  ms.images(ms.gray2cmap(model(batch["images"].cuda())["mask"].squeeze()))
  h, w = batch["images"].shape[-2:]
  ms.images(ms.gray2cmap(deconvolve(ms.t2n(model(batch["images"].cuda())["cam"]), kernel(46,65, sigma=1.5))))
  model = ms.load_latest_model(main_dict)

  opt = ms.create_opt(model, main_dict)
  val_dict, pred_annList = au.validate(model, val_set, 
            predict_method="BestDice", 
            n_val=None, return_annList=True)

  
  ms.visBlobs(model, batch)
  ms.visPretty(model, batch, alpha=0.0)
  if ms.model_exists(main_dict) and main_dict["reset"] != "reset":
    model = ms.load_latest_model(main_dict)
    opt = ms.create_opt(model, main_dict)
    history = ms.load_history(main_dict)
    import ipdb; ipdb.set_trace()  # breakpoint 46fc0d2c //

    batch=ms.get_batch(val_set,indices=[2])
    model.visualize(batch, cam_index=1)
    model.embedding_head.score_8s.bias
    dice_scores = val.valPascal(model, val_set, 
                                  predict_method="BestDice", 
                                  n_val=[11])
    # vis.visBlobs(model,ms.get_batch(val_set,indices=[14]))
    # dice_scores = val.valPascal(model, val_set, 
    #                                 predict_method="BestDice", 
    #                                 n_val=[11])
    
    import ipdb; ipdb.set_trace()  # breakpoint 54f5496d //
    dice_scores = val.valPascal(model, val_set, 
                                    predict_method="BestDice", 
                                    n_val=[80,81])
    vis.visBlobList(model, val_set,[1,2,3])
    dice_scores = val.valPascal(model, val_set, 
                                          predict_method="BestDice", 
                                          n_val=len(val_set))

    obj_scores = val.valPascal(model, val_set, 
                                          predict_method="BestObjectness", 
                                          n_val=len(val_set))

    vis.visBlobs(model, batch)
    import ipdb; ipdb.set_trace()  # breakpoint cbf2e6d1 //
    ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                opt=opt, epochs=10000, visualize=True)
    dice_scores = val.valPascal(model, val_set, 
                                    predict_method="BestDice", 
                                    n_val=[630, 631, 632])

    obj_scores = val.valPascal(model, val_set, 
                              predict_method="BestObjectness", 
                              n_val=100)

    dice_scores = val.valPascal(model, val_set, 
                              predict_method="BestDice", 
                              n_val=len(val_set))
    # val.valPascal(model, val_set, 
    #                     predict_method="BestObjectness", 
    #                     n_val=[10])

    model.predict(batch, predict_method="BestDice")
    import ipdb; ipdb.set_trace()  # breakpoint 797d17b4 //
    
    obj_scores = val.valPascal(model, val_set, 
                              predict_method="BestObjectness", 
                              n_val=30)
    vis.visBlobs(model, ms.get_batch(val_set,indices=[14]), 
        predict_method="BestDice")
    model.predict(batch, predict_method="blobs")
    import ipdb; ipdb.set_trace()  # breakpoint f4598264 //

    model.visaulize(batch)
    

    

    val.valPascal(model, val_set, 
                        predict_method="BestObjectness", 
                        n_val=[10])
    vis.visBlobs(model, batch, 
              predict_method="BestObjectness")
    import ipdb; ipdb.set_trace()  # breakpoint f691d432 //
    ms.fit(model, ms.get_dataloader(val_set, batch_size=1, sampler_class=None),
      opt=opt, loss_function=main_dict["loss_dict"][loss_name])  
    vis.visBlobs(model, ms.get_batch(val_set,indices=[1]), 
              predict_method="UpperBound")

    history = ms.load_history(main_dict)
    # model = ms.load_best_model(main_dict)
    
    #print("Loaded best model...")
    
  else:
    model, opt, _ = ms.init_model_and_opt(main_dict)
  import ipdb; ipdb.set_trace()  # breakpoint e26f9978 //
  
  obj_scores = val.valPascal(model, val_set, 
                              predict_method="BestObjectness", 
                              n_val=[2])
  # ms.images(batch["images"], model.predict(batch, "blobs"), denorm=1)
  import ipdb; ipdb.set_trace()  # breakpoint 08a2a8af //
  vis.visBlobs(model, batch)
  vis.visBlobs(model,ms.get_batch(val_set,indices=[14]))
  ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                opt=opt, epochs=10000, visualize=True)
  ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
              opt=opt, epochs=10, visualize=True)

  #test_prm(model, batch)
  # test_prm(model, batch, i=1, j=0)
  # import ipdb; ipdb.set_trace()  # breakpoint a860544a //
  # img2 = batch["images"].cuda().requires_grad_()
  # cues=rm.peak_response(model.backbone, img, peak_threshold=1)
  # batch = ms.get_batch(train_set,indices=[0])
  # vis.visBatch(ms.get_batch(train_set,indices=[72]))
  #vis.visBlobs(model, batch)
  #ms.images(batch["images"], batch["points"], denorm=1, enlarge=1)
  # vis.visSplit(model, batch)
  #model.set_proposal(None); vis.visBlobs(model, batch)
  # vis.visBlobs(model, batch)
  #vis.visBlobList(model, val_set, [0, 1,2,3])
  # for i in range(len(train_set)): print(i);x=train_set[i]
  # vis.visBlobs(model, batch)
  
  '''
  mask = np.zeros(batch["images"].shape)[:,0]
  ms.images(batch["images"], mask, denorm=1)
  for i in range(400):
    mask +=  (i+1)*(rescale(sharp_proposals[i]["mask"],0.5)>0).astype(int)
  annList = vis.visAnnList(model, val_set, [34], cocoGt,  
                 predict_proposal="BestObjectness") 
  ''' 
  n_images = 10
  batch = ms.get_batch(val_set,indices=[9])
  import ipdb; ipdb.set_trace()  # breakpoint 8d385ace //
  batch = ms.get_batch(val_set,indices=[50])
  
  ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
              opt=opt, epochs=10)
  vis.visBlobs(model, ms.get_batch(val_set,indices=[3]), predict_method="BestDice")
  vis.visBlobs(model, batch)
  import ipdb; ipdb.set_trace()  # breakpoint 99558393 //
  val.valPascal(model, val_set, 
                        predict_method="BestObjectness", 
                        n_val=10)
  val.valPascal(model, val_set, 
                        predict_method="BestDice", 
                        n_val=10)
  val.valPascal(model, val_set, 
                        predict_method="BestDice_no", 
                        n_val=[10])
  batch = ms.get_batch(val_set,indices=[10])
  model.predict(batch, predict_method="BestDice")
  model.predict(batch, predict_method="BestDice_no")
  vis.visBlobs(model, batch)
  vis.visBlobs(model, batch, predict_method=main_dict["predict_name"], cocoGt=val_set.cocoGt)

  val.valPascal(model, val_set, 
                  predict_method="BestObjectness", 
                  n_val=15)
  val.valPascal(model, val_set, 
                  predict_method="BoxSegment", 
                  n_val=15)

  val.valPascal(model, val_set, 
                  predict_method=main_dict["predict_name"], 
                  n_val=15)
  
  vis.visBlobs(model, batch)
  ms.fitBatch(model, batch, 
              loss_function=loss_dict[main_dict["loss_name"]], 
              opt=opt, epochs=5)
  vis.visBlobs(model, batch)
  ms.images(bu.batch2propDict(ms.get_batch(val_set,indices=[1]))["foreground"])
  batch = ms.get_batch(val_set,indices=[19]);ms.images(batch["images"],bu.batch2propDict(batch)["foreground"],denorm=1)
  ms.fitBatch(model, batch, 
              loss_function=loss_dict[main_dict["loss_name"]], 
              opt=opt, epochs=100)
  vis.visBlobs(model, ms.get_batch(val_set,indices=[1]), 
              predict_method="GlanceBestBox")
  val.valPascal(model, val_set, 
                  predict_method="GlanceBestBox", 
                  n_val=15)

  val.valPascal(model, val_set, 
                  predict_method="BestDice", 
                  n_val=15)


  import ipdb; ipdb.set_trace()  # breakpoint 01f8e3fa //

  val.valPascal(model, val_set, 
                  predict_method=main_dict["predict_name"], 
                  n_val=5)

  import ipdb; ipdb.set_trace()  # breakpoint 78d3f03a //
  vis.visBlobs(model, ms.get_batch(val_set,indices=[1]))
  vis.visBlobs(model, ms.get_batch(val_set,indices=[1]), 
              predict_method="BestObjectness")
  vis.visBlobs(model, ms.get_batch(val_set,indices=[1]), 
              predict_method="UpperBound")
  ms.fitBatch(model, batch, loss_function=loss_dict[main_dict["loss_name"]], 
              opt=opt, epochs=100)
  # ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                # opt=opt, epochs=1)
  # ms.fitData(model, val_set,opt=opt, loss_function=loss_dict[loss_name])
  import ipdb; ipdb.set_trace()  # breakpoint 51e4d47d //

  val.valPascal(model, val_set, 
                  predict_method="BestObjectness", 
                  n_val=n_images)
  val.valPascal(model, val_set, 
                  predict_method="UpperBound", 
                  n_val=len(val_set))
  # vis.visBlobs(model, ms.get_batch(val_set,indices=[1]))
  vis.visBlobs(model, ms.get_batch(val_set,indices=[1]))
  vis.visBlobs(model, ms.get_batch(val_set,indices=[1]), 
              predict_method="BestObjectness")

  n_images = len(val_set)
  for e in range(5):
    for i in range(n_images):
        i_rand = np.random.randint(n_images) 
        i_rand = i
        # print
        print(i_rand)
        batch = ms.get_batch(train_set,indices=[i_rand])
        ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                    opt=opt, epochs=1)

  #cocoGt = ms.load_voc2012_val()
  cocoGt = ms.load_cp_val()
  ms.fitBatch(model, batch, loss_function=loss_dict[main_dict["loss_name"]], 
              opt=opt, epochs=100)

  # vis.visAnns(model, batch, cocoGt, predict_proposal="BestBoundary")
  import ipdb; ipdb.set_trace()  # breakpoint 6f37a744 //
  if 1:
    n_images = 30
    resList = []
    for k in range(5):
      for i in range(n_images):
        print(i)
        batch = ms.get_batch(val_set,indices=[i])
        ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                    opt=opt, epochs=2)

      resList +=[val.valPascal(model, val_set, 
                  predict_proposal="excitementInside", 
                  n_val=n_images)]
# excitementInside
  ms.fitBatch(model, batch, loss_function=loss_dict[main_dict["loss_name"]], 
              opt=opt, epochs=100)
  
  import ipdb; ipdb.set_trace()  # breakpoint 14451165 //

  ms.eval_cocoDt(main_dict, predict_proposal="UB_Sharp_withoutVoid")
  import ipdb; ipdb.set_trace()  # breakpoint f3f0fda5 //
  
  vis.visAnns(model, batch, cocoGt, predict_proposal="BestObjectness")
  annList = vis.visAnnList(model, val_set, [1,2], cocoGt, 
    predict_proposal="BestObjectness")


  annList = ms.load_annList(main_dict, predict_proposal="BestObjectness")
  ms.eval_cocoDt(main_dict, predict_proposal="UB_Sharp_withoutVoid")
  # score = np.array([s["score"] for s in annList])
  batch = ms.get_batch(val_set,indices=[2])
  ms.fitBatch(model, batch, loss_function=loss_dict[main_dict["loss_name"]], 
              opt=opt, epochs=100)

  vis.visBlobs(model, batch)

  ms.fitBatch(model, batch, loss_function=loss_dict["water_loss"], 
              opt=opt, epochs=100)
  ms.fitBatch(model, batch, loss_function=loss_dict["point_loss"], 
              opt=opt, epochs=100)
  vis.visSplit(model, batch, 0,"water")

  


  '''
  val.valPascal(model, val_set, 
                    predict_proposal="excitementInside", 
                    n_val=30)

  '''
  # model.save(batch, path="/mnt/home/issam/Summaries/tmp.png")
  # batch = ms.get_batch(train_set,indices=[52])
  # torch.save(model.state_dict(), "/mnt/home/issam/Saves/model_split.pth")
  vis.save_images(model, val_set, 
                  #indices=np.random.randint(0, len(val_set), 200),
                  indices=np.arange(5,200),
                  path="/mnt/home/issam/Summaries/{}_val/".format(main_dict["dataset_name"]))

  vis.visBlobs(model, batch)
  ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
              opt=opt, epochs=10)

  ms.valBatch(model, batch, metric_dict[metric_name])
  ms.validate(model, val_set, metric_class=metric_class)
  # ms.visBlobs(model, tr_batch)
  # model.predict(tr_batch,"counts")

  for i in range(292, 784):
    batch = ms.get_batch(val_set, indices=[i])
    try:
      score = ms.valBatch(model,  batch, 
            metric_dict[metric_name]) 
    except:
      print(i, batch['name']) 
  import ipdb; ipdb.set_trace()  # breakpoint effaca86 //
  
  ms.visBlobs(model, batch)
  if 1:
    resList = []
    for k in range(5):
      for i in range(10):
        print(i)
        batch = ms.get_batch(val_set,indices=[i])
        ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], 
                    opt=opt, epochs=1)

      resList +=[val.valPascal(model, val_set, 
                  predict_proposal="BestObjectness", 
                  n_val=10)]

  val.valPascal(model, val_set, 
              predict_proposal="BestBoundary", 
              n_val=30)
  
  val.valPascal(model, val_set, 
              predict_proposal="BestObjectness", 
              n_val=list(range(len(val_set))))

  #model.predict_proposals(batch)
  batch = ms.get_batch(val_set,indices=[35])
  ms.images(batch["original"], model.predict_proposals(batch, which=0))
  
  ms.images(ms.get_batch(train_set, [300])["original"],
            train_set.get_proposal(300, indices=[0,1]))

  # from spn import object_localization
  #cm = model.class_activation_map(batch["images"].cuda())
  # model.display(ms.get_batch(train_set,indices=[3]))
  # ms.
  ms.images(255*np.abs( model.predict(ms.get_batch(train_set,indices=[3]), "saliency")))
  sal = model.predict(ms.get_batch(train_set,indices=[3]), "saliency")
  ms.images(np.abs(sal)*255)
  import ipdb; ipdb.set_trace()  # breakpoint c7ca398d //

  for i in range(1):
    ms.fit(model, ms.get_dataloader(train_set, batch_size=1, sampler_class=None), 
        loss_function=main_dict["loss_dict"][loss_name], metric_class=main_dict["metric_dict"][metric_name],
                  opt=opt, val_batch=False)
  ms.fitQuick(model, train_set, loss_name=loss_name, metric_name=metric_name,opt=opt)
  ms.fitBatch(model, batch, loss_function=loss_dict[loss_name], opt=opt, epochs=100)
  ms.valBatch(model, batch, metric_dict[metric_name])
  ms.visBlobs(model, ms.get_batch(train_set, indices=[3]) )
  ms.visBlobs(model, batch)
  #model = ms.load_best_model(main_dict)
  #metrics.compute_ap(model, batch)
  #val.val_cm(main_dict)
  batch = ms.visBlobsQ(model, val_set, 8)
  
  import ipdb; ipdb.set_trace()  # breakpoint 5cd16f8f //
  ul.visSp_prob(model, batch)
  
  3
  ms.images(batch["images"], aa, denorm=1)

  ms.visBlobs(model, batch)
  ul.vis_nei(model,batch,topk=1000, thresh=0.8,bg=True)
  ul.vis_nei(model,batch,topk=1000, bg=False)
  ms.fitQuick(model, train_set, batch_size=batch_size,loss_name=loss_name, metric_name=metric_name)
  val.validate(model, val_set, metric_name=main_dict["metric_name"], batch_size=main_dict["val_batchsize"])
  ms.fitQuick(model, train_set, batch_size=batch_size,loss_name=loss_name, metric_name=metric_name)
  ms.fitBatch(model, batch, loss_name=loss_name, opt=opt, epochs=100)
  val.valBatch(model, batch_train, metric_name=metric_name)
  ms.fitBatch(model, batch, loss_function=losses.expand_loss, opt=opt, epochs=100)
  ms.visBlobs(model, batch)
  ms.visWater(model,batch)
  ms.validate(model, val_set, metric_class=metric_class)
  import ipdb; ipdb.set_trace()  # breakpoint ddad840d //
  model, opt, _ = ms.init_model_and_opt(main_dict)
  ms.fitBatch(model, batch, loss_name="water_loss_B", opt=opt, epochs=100)

  ms.fitQuick(model, train_set, loss_name=loss_name, metric_name=metric_name)
  # ms.images(batch["images"], batch["labels"], denorm=1)
  # ms.init.LOSS_DICT["water_loss"](model, batch)
  import ipdb; ipdb.set_trace()  # breakpoint f304b83a //
  ms.images(batch["images"], model.predict(batch, "labels"), denorm=1)
  val.valBatch(model, batch, metric_name=main_dict["metric_name"])
  ms.visBlobs(model, batch)
  import ipdb; ipdb.set_trace()  # breakpoint 074c3921 //

  ms.fitBatch(model, batch, loss_name=main_dict["loss_name"], opt=opt, epochs=100)
  for e in range(10):
    if e == 0:
      scoreList = []
    scoreList += [ms.fitIndices(model, train_set, loss_name=main_dict["loss_name"], batch_size=batch_size,
      metric_name=metric_name, opt=opt, epoch=e, num_workers=1, 
      ind=np.random.randint(0, len(train_set), 32))]
  ms.fitData(model, train_set, opt=opt, epochs=10)
  um.reload(sp);water=sp.watersplit(model, batch).astype(int);ms.images(batch["images"], water, denorm=1)
  ms.visBlobs(model, batch)
  ms.images(batch["images"], ul.split_crf(model, batch),denorm=1)
  losses.dense_crf(model, batch, alpha=61, beta=31, gamma=1)
  
  ms.visBlobs(model, batch)

  model.blob_mode = "superpixels"
  #----------------------

  # Vis Blobs
  ms.visBlobs(model, batch)
  ms.images(batch["images"],model.predict(batch, "labels"), denorm=1)

  # Vis Blobs
  #ms.visBlobs(model, batch)
  ms.images(batch["images"], sp.watersplit_test(model, batch).astype(int), denorm=1)

  #=sp.watersplit(model, batch).astype(int);

  # Vis CRF
  ms.images(batch["images"], ul.dense_crf(model, batch, alpha=5,gamma=5,beta=5,smooth=False), denorm=1)
  ms.images(batch["images"], ul.dense_crf(model, batch), denorm=1)
  # Eval
  val.valBatch(model, batch, metric_name=main_dict["metric_name"])

  import ipdb; ipdb.set_trace()  # breakpoint e9cd4eb0 //
  model = ms.load_best_model(main_dict)

  val.valBatch(model, batch, metric_name=main_dict["metric_name"])
  ms.fitBatch(model, batch, loss_name=main_dict["loss_name"], opt=opt)
  ms.visBlobs(model, batch)
  import ipdb; ipdb.set_trace()  # breakpoint 2167961a //
  batch=ms.get_batch(train_set, indices=[5]) 
  ms.fitBatch(model, batch, loss_name=main_dict["loss_name"], opt=opt)
  ms.images(batch["images"], model.predict(batch, "probs"), denorm=1)

  ms.visBlobs(model, batch)
  val.validate(model, val_set, metric_name=main_dict["metric_name"])
  val.validate(model, val_set, metric_name="SBD")
Пример #6
0
def test_COCOmap(main_dict):
    # create_voc2007(main_dict)

    model = ms.load_best_model(main_dict)
    _, val_set = ms.load_trainval(main_dict)

    path_base = "/mnt/datasets/public/issam/VOCdevkit/annotations/"
    fname = "{}/instances_val2012.json".format(path_base)

    cocoGt = COCO(fname)
    # fname = "{}/instances_val2012.json".format(path_base)
    # cocoGt = COCO(fname)

    fname = (path_base + "/results/" + main_dict["exp_name"] + "_" +
             str(main_dict["model_options"]["predict_proposal"]) + ".json")
    # test_list(model, cocoGt, val_set, [0,1,2,3], prp.Blobs)
    import ipdb
    ipdb.set_trace()  # breakpoint 06c353ef //
    # test_list(model, cocoGt, val_set, [0], prp.BestObjectness)
    # test_list(model, cocoGt, val_set, [0,1,2,3], prp.Blobs)
    if not os.path.exists(fname) or 1:
        annList = []
        for i in range(len(val_set)):
            batch = ms.get_batch(val_set, [i])
            try:
                annList += model.predict(batch, "annList")
            except Exception as exc:
                import ipdb
                ipdb.set_trace()  # breakpoint 5f61b0cfx //
            if (i % 100) == 0:

                cocoEval, _ = d_helpers.evaluateAnnList(annList)
                ms.save_json(fname.replace(".json", "inter.json"), annList)

            # ms.save_json("tmp.json", annList)
            # cocoDt = cocoGt.loadRes("tmp.json")

            # cocoEval = COCOeval(cocoGt, cocoDt, "segm")
            # cocoEval.params.imgIds  = list(set([v["image_id"] for v in cocoDt.anns.values()]))
            # cocoEval.evaluate()
            # cocoEval.accumulate()
            # cocoEval.summarize()

            print("{}/{}".format(i, len(val_set)))

        ms.save_json(fname, annList)
    # cocoEval = d_helpers.evaluateAnnList(ms.load_json(fname))

    # cocoEval = COCOeval(cocoGt, cocoDt, annType)
    #cocoEval.params.imgIds  = list(set([v["image_id"] for v in cocoDt.anns.values()]))
    if 1:
        #cocoEval.params.imgIds = [2007000033]
        cocoDt = cocoGt.loadRes(fname)
        cocoEval = COCOeval(cocoGt, cocoDt, "segm")
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
        print("Images:", len(cocoEval.params.imgIds))
        print("Model: {}, Loss: {}, Pred: {}".format(
            main_dict["model_name"], main_dict["loss_name"],
            main_dict["model_options"]["predict_proposal"]))
    import ipdb
    ipdb.set_trace()  # breakpoint c6f8f580 //
    # d_helpers.visGT(cocoGt, cocoDt,ms.get_batch(val_set, [169]))
    # d_helpers.valList(cocoGt, cocoDt, val_set, [173,174])
    # model.set_proposal(None); vis.visBlobs(model, ms.get_batch(val_set, [169]), "blobs")
    return "mAP25: {:.2f} - mAP75:{:.2f}".format(cocoEval.stats[1],
                                                 cocoEval.stats[2])
Пример #7
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument('-e', '--exp')
    parser.add_argument('-b', '--borgy', default=0, type=int)
    parser.add_argument('-br', '--borgy_running', default=0, type=int)
    parser.add_argument('-m', '--mode', default="summary")
    parser.add_argument('-r', '--reset', default="None")
    parser.add_argument('-s', '--status', type=int, default=0)
    parser.add_argument('-k', '--kill', type=int, default=0)
    parser.add_argument('-g', '--gpu', type=int)
    parser.add_argument('-c', '--configList', nargs="+", default=None)
    parser.add_argument('-l', '--lossList', nargs="+", default=None)
    parser.add_argument('-d', '--datasetList', nargs="+", default=None)
    parser.add_argument('-metric', '--metricList', nargs="+", default=None)
    parser.add_argument('-model', '--modelList', nargs="+", default=None)
    parser.add_argument('-p', '--predictList', nargs="+", default=None)

    args = parser.parse_args()

    if args.borgy or args.kill:
        global_prompt = input("Do all? \n(y/n)\n")

    # SEE IF CUDA IS AVAILABLE
    assert torch.cuda.is_available()
    print("CUDA: %s" % torch.version.cuda)
    print("Pytroch: %s" % torch.__version__)

    mode = args.mode
    exp_name = args.exp

    exp_dict = experiments.get_experiment_dict(args, exp_name)

    pp_main = None
    results = {}

    # Get Main Class
    project_name = os.path.realpath(__file__).split("/")[-2]
    MC = ms.MainClass(path_models="models",
                      path_datasets="datasets",
                      path_metrics="metrics/metrics.py",
                      path_losses="losses/losses.py",
                      path_samplers="addons/samplers.py",
                      path_transforms="addons/transforms.py",
                      path_saves="/mnt/projects/counting/Saves/main/",
                      project=project_name)

    key_set = set()
    for model_name, config_name, metric_name, dataset_name, loss_name in product(
            exp_dict["modelList"], exp_dict["configList"],
            exp_dict["metricList"], exp_dict["datasetList"],
            exp_dict["lossList"]):

        # if model_name in ["LC_RESFCN"]:
        #   loss_name = "water_loss"

        config = configs.get_config_dict(config_name)

        key = ("{} - {} - {}".format(model_name, config_name, loss_name),
               "{}_({})".format(dataset_name, metric_name))

        if key in key_set:
            continue

        key_set.add(key)

        main_dict = MC.get_main_dict(mode, dataset_name, model_name,
                                     config_name, config, args.reset,
                                     exp_dict["epochs"], metric_name,
                                     loss_name)
        main_dict["predictList"] = exp_dict["predictList"]

        if mode == "paths":
            print("\n{}_({})".format(dataset_name, model_name))
            print(main_dict["path_best_model"])
            # print( main_dict["exp_name"])

        predictList_str = ' '.join(exp_dict["predictList"])

        if args.status:
            results[key] = borgy.borgy_status(mode, config_name, metric_name,
                                              model_name, dataset_name,
                                              loss_name, args.reset,
                                              predictList_str)

            continue

        if args.kill:
            results[key] = borgy.borgy_kill(mode, config_name, metric_name,
                                            model_name, dataset_name,
                                            loss_name, args.reset,
                                            predictList_str)
            continue

        if args.borgy:
            results[key] = borgy.borgy_submit(project_name, global_prompt,
                                              mode, config_name, metric_name,
                                              model_name, dataset_name,
                                              loss_name, args.reset,
                                              predictList_str)

            continue

        if mode == "debug":
            debug.debug(main_dict)

        if mode == "validate":
            validate.validate(main_dict)
        if mode == "save_gam_points":
            train_set, _ = au.load_trainval(main_dict)
            model = ms.load_best_model(main_dict)
            for i in range(len(train_set)):
                print(i, "/", len(train_set))
                batch = ms.get_batch(train_set, [i])
                fname = train_set.path + "/gam_{}.pkl".format(
                    batch["index"].item())
                points = model.get_points(batch)
                ms.save_pkl(fname, points)
            import ipdb
            ipdb.set_trace()  # breakpoint ee49ab9f //

        if mode == "save_prm_points":
            train_set, _ = au.load_trainval(main_dict)
            model = ms.load_best_model(main_dict)
            for i in range(len(train_set)):
                print(i, "/", len(train_set))
                batch = ms.get_batch(train_set, [i])

                fname = "{}/prm{}.pkl".format(batch["path"][0],
                                              batch["name"][0])
                points = model.get_points(batch)
                ms.save_pkl(fname, points)
            import ipdb
            ipdb.set_trace()  # breakpoint 679ce152 //

            # train_set, _ = au.load_trainval(main_dict)
            # model = ms.load_best_model(main_dict)
            # for i in range(len(train_set)):
            #   print(i, "/", len(train_set))
            #   batch = ms.get_batch(train_set, [i])
            #   fname = train_set.path + "/gam_{}.pkl".format(batch["index"].item())
            #   points = model.get_points(batch)
            #   ms.save_pkl(fname, points)

        # if mode == "pascal_annList":
        #   data_utils.pascal2lcfcn_points(main_dict)
        if mode == "upperboundmasks":
            import ipdb
            ipdb.set_trace()  # breakpoint 02fac8ce //

            results = au.test_upperboundmasks(main_dict, reset=args.reset)
            print(pd.DataFrame(results))

        if mode == "model":

            results = au.test_model(main_dict, reset=args.reset)
            print(pd.DataFrame(results))

        if mode == "upperbound":
            results = au.test_upperbound(main_dict, reset=args.reset)

            print(pd.DataFrame(results))

        if mode == "MUCov":
            gtAnnDict = au.load_gtAnnDict(main_dict, reset=args.reset)

            # model = ms.load_best_model(main_dict)
            fname = main_dict["path_save"] + "/pred_annList.pkl"
            if not os.path.exists(fname):
                _, val_set = au.load_trainval(main_dict)
                model = ms.load_best_model(main_dict)
                pred_annList = au.dataset2annList(model,
                                                  val_set,
                                                  predict_method="BestDice",
                                                  n_val=None)
                ms.save_pkl(fname, pred_annList)

            else:
                pred_annList = ms.load_pkl(fname)
            import ipdb
            ipdb.set_trace()  # breakpoint 527a7f36 //
            pred_annList = au.load_predAnnList(main_dict,
                                               predict_method="BestObjectness")
            # 0.31 best objectness pred_annList =
            # 0.3482122335421256
            # au.get_MUCov(gtAnnDict, pred_annList)
            au.get_SBD(gtAnnDict, pred_annList)

        if mode == "dic_sbd":
            import ipdb
            ipdb.set_trace()  # breakpoint 4af08a17 //

        if mode == "point_mask":
            from datasets import base_dataset

            import ipdb
            ipdb.set_trace()  # breakpoint 7fd55e0c //
            _, val_set = ms.load_trainval(main_dict)
            batch = ms.get_batch(val_set, [1])
            model = ms.load_best_model(main_dict)
            pred_dict = model.LCFCN.predict(batch)
            # ms.pretty_vis(batch["images"], base_dataset.batch2annList(batch))
            ms.images(ms.pretty_vis(
                batch["images"],
                model.LCFCN.predict(batch,
                                    predict_method="original")["annList"]),
                      win="blobs")
            ms.images(ms.pretty_vis(batch["images"],
                                    base_dataset.batch2annList(batch)),
                      win="erww")
            ms.images(batch["images"],
                      batch["points"],
                      denorm=1,
                      enlarge=1,
                      win="e21e")
            import ipdb
            ipdb.set_trace()  # breakpoint ab9240f0 //

        if mode == "lcfcn_output":
            import ipdb
            ipdb.set_trace()  # breakpoint 7fd55e0c //

            gtAnnDict = au.load_gtAnnDict(main_dict, reset=args.reset)

        if mode == "load_gtAnnDict":
            _, val_set = au.load_trainval(main_dict)
            gtAnnDict = au.load_gtAnnDict(val_set)

            # gtAnnClass = COCO(gtAnnDict)
            # au.assert_gtAnnDict(main_dict, reset=None)
            # _,val_set = au.load_trainval(main_dict)
            # annList_path = val_set.annList_path

            # fname_dummy = annList_path.replace(".json","_best.json")
            # predAnnDict = ms.load_json(fname_dummy)
            import ipdb
            ipdb.set_trace()  # breakpoint 100bfe1b //
            pred_annList = ms.load_pkl(main_dict["path_best_annList"])
            # model = ms.load_best_model(main_dict)
            _, val_set = au.load_trainval(main_dict)
            batch = ms.get_batch(val_set, [1])

            import ipdb
            ipdb.set_trace()  # breakpoint 2310bb33 //
            model = ms.load_best_model(main_dict)
            pred_dict = model.predict(batch, "BestDice", "mcg")
            ms.images(batch["images"],
                      au.annList2mask(pred_dict["annList"])["mask"],
                      denorm=1)
            # pointList2UpperBoundMCG
            pred_annList = au.load_predAnnList(main_dict,
                                               predict_method="BestDice",
                                               proposal_type="mcg",
                                               reset="reset")
            # annList = au.pointList2UpperBoundMCG(batch["lcfcn_pointList"], batch)["annList"]
            ms.images(batch["images"],
                      au.annList2mask(annList)["mask"],
                      denorm=1)
            pred_annList = au.load_BestMCG(main_dict, reset="reset")
            # pred_annList = au.dataset2annList(model, val_set,
            #                   predict_method="BestDice",
            #                   n_val=None)
            au.get_perSizeResults(gtAnnDict, pred_annList)

        if mode == "vis":
            _, val_set = au.load_trainval(main_dict)
            batch = ms.get_batch(val_set, [3])

            import ipdb
            ipdb.set_trace()  # breakpoint 05e6ef16 //

            vis.visBaselines(batch)

            model = ms.load_best_model(main_dict)
            vis.visBlobs(model, batch)

        if mode == "qual":
            model = ms.load_best_model(main_dict)
            _, val_set = au.load_trainval(main_dict)
            path = "/mnt/home/issam/Summaries/{}_{}".format(
                dataset_name, model_name)
            try:
                ms.remove_dir(path)
            except:
                pass
            n_images = len(val_set)
            base = "{}_{}".format(dataset_name, model_name)
            for i in range(50):
                print(i, "/10", "- ", base)
                index = np.random.randint(0, n_images)
                batch = ms.get_batch(val_set, [index])
                if len(batch["lcfcn_pointList"]) == 0:
                    continue
                image = vis.visBlobs(model, batch, return_image=True)

                # image_baselines = vis.visBaselines(batch, return_image=True)
                # imgAll = np.concatenate([image, image_baselines], axis=1)

                fname = path + "/{}_{}.png".format(i, base)
                ms.create_dirs(fname)
                ms.imsave(fname, image)

        if mode == "test_baselines":
            import ipdb
            ipdb.set_trace()  # breakpoint b51c5b1f //
            results = au.test_baselines(main_dict, reset=args.reset)
            print(pd.DataFrame(results))

        if mode == "test_best":
            au.test_best(main_dict)

        if mode == "qualitative":
            au.qualitative(main_dict)

        if mode == "figure1":
            from PIL import Image
            from addons import transforms
            model = ms.load_best_model(main_dict)
            _, val_set = au.load_trainval(main_dict)
            # proposals_path = "/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/ProposalsSharp/"
            # vidList = glob("/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/stuttgart_01/*")
            # vidList.sort()

            # pretty_image = ms.visPretty(model, batch = ms.get_batch(val_set, [i]), with_void=1, win="with_void")
            batch = ms.get_batch(val_set, [68])
            bestdice = ms.visPretty(model,
                                    batch=batch,
                                    with_void=0,
                                    win="no_void")
            blobs = ms.visPretty(model,
                                 batch=batch,
                                 predict_method="blobs",
                                 with_void=0,
                                 win="no_void")

            ms.images(bestdice, win="BestDice")
            ms.images(blobs, win="Blobs")
            ms.images(batch["images"], denorm=1, win="Image")
            ms.images(batch["images"],
                      batch["points"],
                      enlarge=1,
                      denorm=1,
                      win="Points")
            import ipdb
            ipdb.set_trace()  # breakpoint cf4bb3d3 //

        if mode == "video2":
            from PIL import Image
            from addons import transforms
            model = ms.load_best_model(main_dict)
            _, val_set = au.load_trainval(main_dict)
            # proposals_path = "/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/ProposalsSharp/"
            # vidList = glob("/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/stuttgart_01/*")
            # vidList.sort()
            index = 0
            for i in range(len(val_set)):

                # pretty_image = ms.visPretty(model, batch = ms.get_batch(val_set, [i]), with_void=1, win="with_void")
                batch = ms.get_batch(val_set, [i])
                pretty_image = ms.visPretty(model,
                                            batch=batch,
                                            with_void=0,
                                            win="no_void")
                # pred_dict = model.predict(batch, predict_method="BestDice")
                path_summary = main_dict["path_summary"]
                ms.create_dirs(path_summary + "/tmp")
                ms.imsave(
                    path_summary + "vid_mask_{}.png".format(index),
                    ms.get_image(batch["images"],
                                 batch["points"],
                                 enlarge=1,
                                 denorm=1))
                index += 1
                ms.imsave(path_summary + "vid_mask_{}.png".format(index),
                          pretty_image)
                index += 1
                # ms.imsave(path_summary+"vid1_full_{}.png".format(i), ms.get_image(img, pred_dict["blobs"], denorm=1))
                print(i, "/", len(val_set))

        if mode == "video":
            from PIL import Image
            from addons import transforms
            model = ms.load_best_model(main_dict)
            # _, val_set = au.load_trainval(main_dict)
            proposals_path = "/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/ProposalsSharp/"
            vidList = glob(
                "/mnt/datasets/public/issam/Cityscapes/demoVideo/leftImg8bit/demoVideo/stuttgart_01/*"
            )
            vidList.sort()
            for i, img_path in enumerate(vidList):
                image = Image.open(img_path).convert('RGB')
                image = image.resize((1200, 600), Image.BILINEAR)
                img, _ = transforms.Tr_WTP_NoFlip()([image, image])

                pred_dict = model.predict(
                    {
                        "images": img[None],
                        "split": ["test"],
                        "resized": torch.FloatTensor([1]),
                        "name": [ms.extract_fname(img_path)],
                        "proposals_path": [proposals_path]
                    },
                    predict_method="BestDice")
                path_summary = main_dict["path_summary"]
                ms.create_dirs(path_summary + "/tmp")
                ms.imsave(path_summary + "vid1_mask_{}.png".format(i),
                          ms.get_image(pred_dict["blobs"]))
                ms.imsave(path_summary + "vid1_full_{}.png".format(i),
                          ms.get_image(img, pred_dict["blobs"], denorm=1))
                print(i, "/", len(vidList))

        if mode == "5_eval_BestDice":
            gtAnnDict = au.load_gtAnnDict(main_dict)
            gtAnnClass = COCO(gtAnnDict)
            results = au.assert_gtAnnDict(main_dict, reset=None)

        if mode == "cp_annList":
            ms.dataset2cocoformat(dataset_name="CityScapes")

        if mode == "pascal2lcfcn_points":
            data_utils.pascal2lcfcn_points(main_dict)

        if mode == "cp2lcfcn_points":
            data_utils.cp2lcfcn_points(main_dict)

        if mode == "train":

            train.main(main_dict)
            import ipdb
            ipdb.set_trace()  # breakpoint a5d091b9 //

        if mode == "train_only":

            train.main(main_dict, train_only=True)
            import ipdb
            ipdb.set_trace()  # breakpoint a5d091b9 //

        if mode == "sharpmask2psfcn":
            for split in ["train", "val"]:
                root = "/mnt/datasets/public/issam/COCO2014/ProposalsSharp/"
                path = "{}/sharpmask/{}/jsons/".format(root, split)

                jsons = glob(path + "*.json")
                propDict = {}
                for k, json in enumerate(jsons):
                    print("{}/{}".format(k, len(jsons)))
                    props = ms.load_json(json)
                    for p in props:
                        if p["image_id"] not in propDict:
                            propDict[p["image_id"]] = []
                        propDict[p["image_id"]] += [p]

                for k in propDict.keys():
                    fname = "{}/{}.json".format(root, k)
                    ms.save_json(fname, propDict[k])

        if mode == "cp2coco":
            import ipdb
            ipdb.set_trace()  # breakpoint f2eb9e70 //
            dataset2cocoformat.cityscapes2cocoformat(main_dict)
            # train.main(main_dict)
            import ipdb
            ipdb.set_trace()  # breakpoint a5d091b9 //

        if mode == "train_lcfcn":
            train_lcfcn.main(main_dict)
            import ipdb
            ipdb.set_trace()  # breakpoint a5d091b9 //

        if mode == "summary":

            try:
                history = ms.load_history(main_dict)

                # if predictList_str == "MAE":
                #   results[key] = "{}/{}: {:.2f}".format(history["best_model"]["epoch"],
                #                                                           history["epoch"],
                #                                                           history["best_model"][metric_name])

                # else:
                val_dict = history["val"][-1]
                val_dict = history["best_model"]
                iou25 = val_dict["0.25"]
                iou5 = val_dict["0.5"]
                iou75 = val_dict["0.75"]
                results[key] = "{}/{}: {:.1f} - {:.1f} - {:.1f}".format(
                    val_dict["epoch"], history["epoch"], iou25 * 100,
                    iou5 * 100, iou75 * 100)
                # if history["val"][-1]["epoch"] != history["epoch"]:
                #   results[key] += " | Val {}".format(history["epoch"])
                try:
                    results[key] += " | {}/{}".format(
                        len(history["trained_batch_names"]),
                        history["train"][-1]["n_samples"])
                except:
                    pass
            except:
                pass
        if mode == "vals":

            history = ms.load_history(main_dict)

            for i in range(1, len(main_dict["predictList"]) + 1):
                if len(history['val']) == 0:
                    res = "NaN"
                    continue
                else:
                    res = history["val"][-i]

                map50 = res["map50"]
                map75 = res["map75"]

                # if map75 < 1e-3:
                #   continue

                string = "{} - {} - map50: {:.2f} - map75: {:.2f}".format(
                    res["epoch"], res["predict_name"], map50, map75)

                key_tmp = list(key).copy()
                key_tmp[1] += " {} - {}".format(metric_name,
                                                res["predict_name"])
                results[tuple(key_tmp)] = string

            # print("map75", pd.DataFrame(history["val"])["map75"].max())
            # df = pd.DataFrame(history["vals"][:20])["water_loss_B"]
            # print(df)
    try:
        print(ms.dict2frame(results))
    except:
        print("Results not printed...")