Пример #1
0
def predict(sess, image_file):
    """
    Runs the graph stored in "sess" to predict boxes for "image_file". Prints and plots the preditions.

    Arguments:
    sess -- your tensorflow/Keras session containing the YOLO graph
    image_file -- name of an image stored in the "images" folder.

    Returns:
    out_scores -- tensor of shape (None, ), scores of the predicted boxes
    out_boxes -- tensor of shape (None, 4), coordinates of the predicted boxes
    out_classes -- tensor of shape (None, ), class index of the predicted boxes

    Note: "None" actually represents the number of predicted boxes, it varies between 0 and max_boxes.
    """
    import os
    from matplotlib.pyplot import imshow
    import scipy.misc
    from keras import backend as K
    from misc import read_classes, read_anchors, generate_colors, preprocess_image, draw_boxes, scale_boxes
    from yolo_filter_boxes import yolo_filter_boxes

    # Preprocess your image
    image, image_data = preprocess_image("images/" + image_file,
                                         model_image_size=(608, 608))

    # Run the session with the correct tensors and choose the correct placeholders in the feed_dict.
    # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0})
    out_scores, out_boxes, out_classes = sess.run([scores, boxes, classes],
                                                  feed_dict={
                                                      yolo_model.input:
                                                      image_data,
                                                      K.learning_phase(): 0
                                                  })

    # Print predictions info
    print('Found {} boxes for {}'.format(len(out_boxes), image_file))
    # Generate colors for drawing bounding boxes.
    colors = generate_colors(class_names)
    # Draw bounding boxes on the image file
    draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
    # Save the predicted bounding box on the image
    image.save(os.path.join("out", image_file), quality=90)
    # Display the results in the notebook
    output_image = scipy.misc.imread(os.path.join("out", image_file))
    imshow(output_image)

    return out_scores, out_boxes, out_classes
Пример #2
0
    def build_model(self, data, is_training=True):
        raw_aerial, raw_ground, label_ground = data
        self.image_aerial = misc.preprocess_image(raw_aerial,
                                                  self.szs.image_aerial)
        self.image_ground = misc.preprocess_image(raw_ground,
                                                  self.szs.image_ground)
        self.prob_ground = misc.preprocess_label(label_ground,
                                                 self.num_classes,
                                                 self.szs.after_transf)
        self.im_aerial = misc.proprocess_image(self.image_aerial)
        self.im_ground = misc.proprocess_image(self.image_ground)

        self.feat_aerial = models.pixelnet(self.image_aerial,
                                           self.num_classes,
                                           is_training=is_training,
                                           batch_norm=self.batch_norm)
        misc.pprint(
            self.feat_aerial.get_shape().as_list())  # print the feature size

        if is_training:
            feat_aerial_small = self.feat_aerial
        else:
            feat_aerial_small = tf.image.resize_bilinear(
                self.feat_aerial, self.szs.before_transf)

        weights = models.compute_transfweights(self.szs.before_transf,
                                               self.szs.after_transf,
                                               self.conditioned,
                                               is_training=is_training,
                                               batch_norm=self.batch_norm)
        self.feat_aerial2ground = models.transfnet(feat_aerial_small, weights,
                                                   self.szs.after_transf)

        if is_training:
            self.merged = tf.summary.merge_all()
            self.summarizer = tf.summary.FileWriter(self.log_dir,
                                                    self.sess.graph)

            with tf.name_scope("Loss"):
                self.loss_class = tf.reduce_mean(
                    tf.nn.softmax_cross_entropy_with_logits(
                        None, self.prob_ground, self.feat_aerial2ground))
                self.loss_reg = tf.add_n(
                    tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
                self.loss = self.loss_class + self.loss_reg

            with tf.name_scope("Optimizer"):
                with tf.control_dependencies(
                        tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
                    self.step = tf.Variable(0,
                                            name='global_step',
                                            trainable=False)
                    self.optim = tf.train.AdamOptimizer(
                        tf.train.exponential_decay(
                            0.001, self.step, 5000, .7, staircase=True
                        )  # not sure if this is necessary for Adam optimizer
                    ).minimize(self.loss, global_step=self.step)

        self.saver = tf.train.Saver(max_to_keep=10,
                                    write_version=tf.train.SaverDef.V2)
        misc.pprint("[*] build model.")

        self.transfweights, self.transfbiases = tf.get_collection(
            'transformer_weights')
        self.prob_aerial = tf.nn.softmax(self.feat_aerial)
        self.prob_aerial2ground = tf.nn.softmax(self.feat_aerial2ground)

        with tf.name_scope('Vis'):
            self.visual = [ \
                          self.image_aerial, self.image_ground,
                          tf.cast(self.prob_aerial,        tf.float32)/self.num_classes,
                          tf.cast(self.prob_ground,        tf.float32)/self.num_classes,
                          tf.cast(self.prob_aerial2ground, tf.float32)/self.num_classes,
                          self.transfweights]
import cv2

#
# This code is only for illustrating how the method works.
#
# We DO NOT advise to use this code for inference. Instead, use the code
# in github.com/sariyanidi/face_alignment_opencv, which is maintained
# more frequently and has more flexibility (works for images/videos/image dirs)
# and includes face detection etc. (The lines below assume that the
# face is cropped appropriately)
#
#

# The model file, readable by OpenCV. You need to creat this file by
# running python freeze.py
landmark_net = cv2.dnn.readNetFromTensorflow('models/model_FAN_frozen.pb')
image_path = 'samples/test.png'

# read image
im_orig = cv2.imread(image_path)

(im, pt_center, scale) = preprocess_image(im_orig, 67, 67, 181, 213)
p = get_landmarks(im, landmark_net, pt_center, scale)

for ip in range(p.shape[0]):
    cv2.circle(im_orig, (p[ip, 0], p[ip, 1]), 1, (0, 255, 0), -2)

cv2.imshow("Result", im_orig)
cv2.waitKey(0)
cv2.destroyAllWindows()