def fillVectors(vocab, d, numwords, threshold = 1.0):
    """Fills the vocabulary with randomly generated vectors."""
    
    numgen = 0
    
    timeout = 1000
    
    while numgen < numwords:
        vec = RPMutils.genVector(d)
        
        unique = True
        for i in range(numgen):
            if(RPMutils.similarity(vocab[i][1], vec) > threshold):
                unique = False
        
        if unique:
            vocab[numgen][1] = vec
            numgen = numgen + 1
            timeout = 1000
        
        timeout = timeout - 1
        if timeout == 0:
            System.out.println("Timeout in fillVectors, using threshold of " + str(threshold+0.1))
            return(fillVectors(vocab, d, numwords, threshold+0.1))
    
    return(vocab)
    def __init__(self, name, N, d, vocab):
        NetworkImpl.__init__(self)
        self.name = name

        scaleFactor = 0.1
        smallN = int(math.ceil(float(N) / d))
        tauPSC = 0.007

        ef1 = RPMutils.defaultEnsembleFactory()
        ef1.nodeFactory.tauRef = 0.001

        test = ef1.make("hypothesis", 1, d)
        test.setMode(SimulationMode.DIRECT
                     )  #since this is just a relay ensemble for modularity
        test.fixMode()
        test.addDecodedTermination("input", RPMutils.eye(d, 1), 0.0001, False)
        self.addNode(test)
        self.exposeTermination(test.getTermination("input"), "hypothesis")

        combine = ef1.make("combine", 800, 8)
        #        combine.setMode(SimulationMode.DIRECT) #since this is just a relay ensemble for modularity
        #        combine.fixMode()
        #        combine.collectSpikes(True)
        self.addNode(combine)

        inputVec = [[0] for x in range(8)]

        #create a population for each possible answer
        for i in range(8):
            ans = ef1.make("ans_" + str(i), smallN, 1)
            ans.addDecodedTermination("input", [vocab[i]], tauPSC, False)
            self.addNode(ans)

            self.addProjection(test.getOrigin("X"),
                               ans.getTermination("input"))

            inputVec[i] = [scaleFactor]
            combine.addDecodedTermination("in_" + str(i), inputVec, tauPSC,
                                          False)
            inputVec[i] = [0]

            self.addProjection(ans.getOrigin("X"),
                               combine.getTermination("in_" + str(i)))

        self.exposeOrigin(combine.getOrigin("X"), "result")

        if RPMutils.USE_PROBES:
            self.simulator.addProbe("combine", "X", True)
Пример #3
0
    def __init__(self, name, N, d):
        NetworkImpl.__init__(self)
        self.name = name
        
        tauPSC = 0.007
        
        ef = RPMutils.defaultEnsembleFactory()
        netef = networkensemble.NetworkEnsemble(ef)
        
        #create the approximate inverse matrix
        inv = RPMutils.eye(d, 1)
        for i in range(d/2):
            tmp = inv[i+1]
            inv[i+1] = inv[d-i-1]
            inv[d-i-1] = tmp
        
        #create the two input populations
        Ainv = netef.make("Ainv", N, tauPSC, [inv], None)
        self.addNode(Ainv)
        
        B = netef.make("B", N, tauPSC, [RPMutils.eye(d, 1)], None)
        self.addNode(B)
          
        #create circular convolution network
        corr = cconv.Cconv("corr", N, d)
        self.addNode(corr)
        
        self.addProjection(Ainv.getOrigin("X"), corr.getTermination("A"))
        self.addProjection(B.getOrigin("X"), corr.getTermination("B"))
        
        #average result
        T = average.Average("T", N, d)
        self.addNode(T)
        
        self.addProjection(corr.getOrigin("X"), T.getTermination("input"))
        
        if RPMutils.USE_PROBES:
            self.simulator.addProbe("T", "X", True)
            self.simulator.addProbe("corr", "X", True)
            self.simulator.addProbe("Ainv", "X", True)
            self.simulator.addProbe("B", "X", True)
        
        self.exposeOrigin(T.getOrigin("X"), "T")
        self.exposeTermination(Ainv.getTermination("in_0"), "A")
        self.exposeTermination(B.getTermination("in_0"), "B")
#        self.exposeTermination(T.getTermination("lrate"), "lrate")
    def getMatrixVocab(self): 
        """Returns all the vocabulary (in vector form) used in this matrix."""
        
        #first figure out all the words that are used
        #words in this case are attr x val pairs
        #also add the AxB tags we add to feature descriptions when more than one feature is being used
        v = []  #list of vocab words
        for cell in self.matrix[0:8]:
            for feature in cell:
                fv = "" #the AxB tag
                for attr,val in feature:   
                    v = v + [attr + " " + val] #add the word for this attr-val pair to the list
                    fv = fv + attr + " " + val + ";" #add this attr-val pair to the AxB tag
                
                if len(feature) > 1: 
                    #if more than one attribute in feature, add the tag to the word list (if there is
                    #only one attribute in feature then the tag is the same as the attr-val word we
                    #already added, so unnecessary)
                    v = v + [fv]
        
        #remove duplicates
        v.sort()
        v = [word for i,word in enumerate(v) if i == len(v)-1 or not v[i+1] == word]
        
#        print v
        
        #turn vocab into vectors
        vocab = []
        for word in v:
            vec = None
            prod = None
            for pair in word.split(";"):
                if pair:
                    attr,val = pair.split(" ")
                    
                    #the vector for this attr-val pair
                    pairword = RPMutils.normalize(RPMutils.cconv(self.getVocabVal(attr), self.getVocabVal(val)))
                     
                    vec = RPMutils.vecsum(vec, pairword)  #the non-tag part (vec should always be None, so vec=pairword)
                    prod = RPMutils.cconv(prod, pairword) #the tag part
            if ";" in word:
                vec = prod #then use the tag part
            vocab = vocab + [RPMutils.normalize(vec)]
        
        return vocab
def saveVocab(d, numwords, seed, filename):
    """Saves the vocabulary to file."""
    
    vocab = genVocab(d, numwords, seed)
    
    output = open(filename, "w")
    for name,val in vocab:
        if name:
            output.write(name + " " + RPMutils.floatlist2str(val) + "\n")
    output.close()
def loadVocab(file):
    """Loads vocabulary from file."""
    
    input = open(file)
    vocab = []
    
    for line in input:
        splitline = line.split(" ", 1)
        vocab = vocab + [[splitline[0], RPMutils.str2floatlist(splitline[1])]]
    
    return(vocab)
def genVocab20(d, seed):
    """Vocabulary for 20 base words."""
    
    numwords = 20
    vocab = [[None,None] for i in range(numwords*2)]
    
    PDFTools.setSeed(seed)
#    for i in range(numwords):
#        vocab[i][1] = genVector(d)
    vocab = fillVectors(vocab, d, numwords, RPMutils.VECTOR_SIMILARITY)
    
    PDFTools.setSeed(long(time.time()))
    
    #attributes
    vocab[0][0] = "shape"
    vocab[1][0] = "number" 
    vocab[2][0] = "size"
    vocab[3][0] = "orientation"
    vocab[4][0] = "position"
    
    #values
    #vocab[5][0] = "small"
    #vocab[6][0] = "medium"
    #vocab[7][0] = "large"
    vocab[8][0] = "zero"
    vocab[9][0] = "one"
    vocab[10][0] = "plusone"
    vocab[11][0] = "horizontal"
    vocab[12][0] = "vertical"
    vocab[13][0] = "oblique"
#    vocab[14][0] = 
    vocab[15][0] = "circle"
    vocab[16][0] = "square" 
    vocab[17][0] = "diamond"
    vocab[18][0] = "triangle"
    vocab[19][0] = "rubbish"
    
    #now the higher level vocabulary
    vocab[20][0] = "two"
    vocab[20][1] = RPMutils.normalize(RPMutils.cconv(vocab[9][1], vocab[10][1]))
    vocab[21][0] = "three"
    vocab[21][1] = RPMutils.normalize(RPMutils.cconv(vocab[20][1], vocab[10][1]))
    vocab[22][0] = "four"
    vocab[22][1] = RPMutils.normalize(RPMutils.cconv(vocab[21][1], vocab[10][1]))
    
    output = open(RPMutils.vocabFile(d, numwords, seed), "w")
    for i in range(len(vocab)):
        if vocab[i][0] != None:
            output.write(vocab[i][0] + " " + RPMutils.floatlist2str(vocab[i][1]) + "\n")
    output.close()
 def encodeMatrix(self, matrix):
     """Converts the matrix into vector form."""
     
     #check if there is more than one feature in the matrix
     #this is relevant because if there is more than one feature then
     #we will encode each feature as A + B + AxB, whereas if there is
     #only one feature we will just use A + B
     oneFeature = True
     for cell in matrix:
         if len(cell) > 1:
             oneFeature = False
     
     result = []
     #for each cell in the matrix
     for cell in matrix:
         vec = None #the vector representation for this cell
         
         #for each feature in the cell
         for feature in cell:
             featurevec = None #the vector representation for this feature (the A + B part)
             prodvec = None #the AxB part of the vector representation of this feature
             
             #for each attr in the feature
             for attr,val in feature:
                 attribute = self.getVocabVal(attr)
                 value = self.getVocabVal(val)
                 
                 pairword = RPMutils.normalize(RPMutils.cconv(attribute,value)) #vector for that attribute-value pair
                 
                 featurevec = RPMutils.vecsum(featurevec, pairword)
                 prodvec = RPMutils.cconv(prodvec,pairword)
             
             if oneFeature:
                 if vec != None:
                     System.err.println("oneFeature is true but more than one feature vector is being calculated!")
                 vec = featurevec #ignore the AxB part and vec=featurevec because there is only one feature
             else:
                 #add this feature (including AxB part) to previous features in the cell 
                 vec = RPMutils.vecsum(vec, RPMutils.normalize(RPMutils.vecsum(RPMutils.normalize(prodvec), RPMutils.normalize(featurevec))))
         if vec==None:
             vec = self.getVocabVal("null")
         result = result + [RPMutils.normalize(vec)]
     
     return result
Пример #9
0
    def __init__(self, name, N, d):
        NetworkImpl.__init__(self)
        self.name = name

        tauPSC = 0.007

        ef = RPMutils.defaultEnsembleFactory()
        netef = networkensemble.NetworkEnsemble(ef)

        #scale input to integrator (adaptive learning rate)
        #        scaler = eprod.Eprod("scaler", N, d, oneDinput=True)
        #        self.addNode(scaler)

        #new idea, try a constant scale
        #constant scale on input: 0.4
        #constant scale on recurrent connection: 0.8 (forget rate 0.2)

        #create integrator
        #we scale the input by 1/stepsize because we want the integrator to reach the target value in stepsize*1s, not 1s
        int = integrator.Integrator("int",
                                    N,
                                    d,
                                    inputScale=0.4,
                                    forgetRate=0.2,
                                    stepsize=RPMutils.STEP_SIZE)
        self.addNode(int)

        #        self.addProjection(scaler.getOrigin("X"), int.getTermination("input"))

        if RPMutils.USE_PROBES:
            self.simulator.addProbe("int", "X", True)
#            self.simulator.addProbe("scaler", "X", True)

        self.exposeOrigin(int.getOrigin("X"), "X")
        #        self.exposeTermination(scaler.getTermination("A"), "input")
        #        self.exposeTermination(scaler.getTermination("B"), "lrate")
        self.exposeTermination(int.getTermination("input"), "input")
Пример #10
0
def testSimilarity(vocab):
    """Calculates a measure of the vocabulary's similarity."""
    
    #we will count the average proportion of the vocabulary that is more than
    #threshold similar to each vector in the population
    threshold = 0.3
    vecs = [x[1] for x in vocab]
    
    sim = 0.0
    for i in range(len(vocab)):
        count = 0.0
        
        #count the number of vectors that exceed threshold
        for j in range(len(vocab)):
            if i != j:
                if RPMutils.similarity(vecs[i],vecs[j]) > threshold:
                    count += 1.0
                    
        count /= len(vocab)
        sim += count
    
    sim /= len(vocab)
    
    return sim
Пример #11
0
    def __init__(self,
                 name,
                 N,
                 d,
                 scale=1.0,
                 weights=None,
                 maxinput=1.0,
                 oneDinput=False):
        #scale is a scale on the output of the multiplication
        #output = (input1.*input2)*scale

        #weights are optional matrices applied to each input
        #output = (C1*input1 .* C2*input2)*scale

        #maxinput is the maximum expected value of any dimension of the inputs. this is used to
        #scale the inputs internally so that the length of the vectors in the intermediate populations are not
        #too small (which results in a lot of noise in the calculations)

        #oneDinput indicates that the second input is one dimensional, and is just a scale on the
        #first input rather than an element-wise product

        NetworkImpl.__init__(self)
        self.name = name

        smallN = int(math.ceil(float(N) /
                               d))  #the size of the intermediate populations
        tauPSC = 0.007

        #the maximum value of the vectors represented by the intermediate populations.
        #the vector is at most [maxinput maxinput], so the length of that is
        #sqrt(maxinput**2 + maxinput**2)
        maxlength = math.sqrt(2 * maxinput**2)

        if weights != None and len(weights) != 2:
            System.out.println("Warning, other than 2 matrices given to eprod")

        if weights == None:
            weights = [RPMutils.eye(d, 1), RPMutils.eye(d, 1)]

        inputd = len(weights[0][0])

        ef = RPMutils.defaultEnsembleFactory()

        #create input populations
        in1 = ef.make("in1", 1, inputd)
        in1.addDecodedTermination("input", RPMutils.eye(inputd, 1), 0.0001,
                                  False)
        self.addNode(in1)
        in1.setMode(SimulationMode.DIRECT
                    )  #since this is just a relay ensemble for modularity
        in1.fixMode()

        in2 = ef.make("in2", 1, inputd)
        if not oneDinput:
            in2.addDecodedTermination("input", RPMutils.eye(inputd, 1), 0.0001,
                                      False)
        else:
            #if it is a 1-D input we just expand it to a full vector of that value so that we
            #can treat it as an element-wise product
            in2.addDecodedTermination("input", [[1] for i in range(inputd)],
                                      0.0001, False)
        self.addNode(in2)
        in2.setMode(SimulationMode.DIRECT
                    )  #since this is just a relay ensemble for modularity
        in2.fixMode()

        #ensemble for intermediate populations
        multef = NEFEnsembleFactoryImpl()
        multef.nodeFactory.tauRC = 0.05
        multef.nodeFactory.tauRef = 0.002
        multef.nodeFactory.maxRate = IndicatorPDF(200, 500)
        multef.nodeFactory.intercept = IndicatorPDF(-1, 1)
        multef.encoderFactory = MultiplicationVectorGenerator()
        multef.beQuiet()

        result = ef.make("result", 1, d)
        result.setMode(SimulationMode.DIRECT
                       )  #since this is just a relay ensemble for modularity
        result.fixMode()
        self.addNode(result)

        if RPMutils.SPLIT_DIMENSIONS:
            resultTerm = [[0] for x in range(d)]
            zeros = [0 for x in range(inputd)]
            one = [0 for x in range(inputd)]

            mpop = []
            for e in range(d):
                #create a 2D population for each input dimension which will combine the components from
                #one dimension of each of the input populations
                mpop = multef.make('mpop_' + str(e), smallN, 2)

                #make two connection that will select one component from each of the input pops
                #we divide by maxlength to ensure that the maximum length of the 2D vector is 1
                #remember that (for some reason) the convention in Nengo is that the input matrices are transpose of what they should be mathematically
                for i in range(inputd):
                    one[i] = (1.0 / maxlength) * weights[0][e][i]
                mpop.addDecodedTermination('a', [one, zeros], tauPSC, False)

                for i in range(inputd):
                    one[i] = (1.0 / maxlength) * weights[1][e][i]
                mpop.addDecodedTermination('b', [zeros, one], tauPSC, False)
                one = [0 for x in range(inputd)]

                #multiply the two selected components together
                mpop.addDecodedOrigin("output", [PostfixFunction('x0*x1', 2)],
                                      "AXON")
                self.addNode(mpop)
                self.addProjection(in1.getOrigin('X'),
                                   mpop.getTermination('a'))
                self.addProjection(in2.getOrigin('X'),
                                   mpop.getTermination('b'))

                #combine the 1D results back into one vector
                resultTerm[e] = [
                    maxlength**2 * scale
                ]  #undo our maxlength manipulations and apply the scale
                #we scaled each input by 1/maxlength, then multiplied them together for a total scale of
                #1/maxlength**2, so to undo we multiply by maxlength**2
                result.addDecodedTermination('in_' + str(e), resultTerm,
                                             0.0001, False)
                resultTerm[e] = [0]

                self.addProjection(mpop.getOrigin('output'),
                                   result.getTermination('in_' + str(e)))
        else:
            #do all the multiplication in one population rather than splitting it up by dimension. note that this will
            #only really work in direct mode.

            mpop = ef.make("mpop", N, 2 * d)
            mpop.addDecodedTermination(
                "a", weights[0] + [[0 for x in range(inputd)]
                                   for y in range(d)], tauPSC, False)
            mpop.addDecodedTermination("b", [[0 for x in range(inputd)]
                                             for y in range(d)] + weights[1],
                                       tauPSC, False)
            mpop.addDecodedOrigin("output", [
                PostfixFunction("x" + str(i) + "*x" + str(d + i), 2 * d)
                for i in range(d)
            ], "AXON")
            self.addNode(mpop)

            self.addProjection(in1.getOrigin("X"), mpop.getTermination("a"))
            self.addProjection(in2.getOrigin("X"), mpop.getTermination("b"))

            result.addDecodedTermination("input", RPMutils.eye(d, scale),
                                         tauPSC, False)
            self.addProjection(mpop.getOrigin("output"),
                               result.getTermination("input"))

        self.exposeTermination(in1.getTermination("input"), "A")
        self.exposeTermination(in2.getTermination("input"), "B")
        self.exposeOrigin(result.getOrigin("X"), "X")
    def __init__(self, N, d, matrix):
        NetworkImpl.__init__(self)
        self.name = "SequenceSolver"
        self.N = N
        self.d = d

        ef1 = RPMutils.defaultEnsembleFactory()

        #load matrix data from file
        matrixData = self.loadSequenceMatrix(matrix)

        #the two input signals, A and B, representing the sequence of example pairs
        Ain = matrixData[0]
        Bin = matrixData[1]
        self.addNode(Ain)
        self.addNode(Bin)

        #the adaptive learning rate
        #        lrate = matrixData[2]
        #        self.addNode(lrate)

        #calculate the T for the current A and B
        calcT = transform.Transform("calcT", N, d)
        self.addNode(calcT)

        self.addProjection(Ain.getOrigin("origin"), calcT.getTermination("A"))
        self.addProjection(Bin.getOrigin("origin"), calcT.getTermination("B"))
        #        self.addProjection(lrate.getOrigin("origin"), calcT.getTermination("lrate"))

        if RPMutils.USE_CLEANUP:
            #run T through cleanup memory
            cleanT = memory.Memory("cleanT", N, d)
            self.addNode(cleanT)

            self.addProjection(calcT.getOrigin("T"),
                               cleanT.getTermination("dirty"))

        #calculate the result of applying T to the second last cell
        secondLast = matrixData[3]
        self.addNode(secondLast)

        calcLast = cconv.Cconv("calcLast", N, d)
        self.addNode(calcLast)

        self.addProjection(secondLast.getOrigin("origin"),
                           calcLast.getTermination("A"))

        if RPMutils.USE_CLEANUP:
            self.addProjection(cleanT.getOrigin("clean"),
                               calcLast.getTermination("B"))
        else:
            self.addProjection(calcT.getOrigin("T"),
                               calcLast.getTermination("B"))

        if RPMutils.LOAD_RULES:
            self.removeProjection(calcLast.getTermination("B"))
            rulesig = matrixData[len(matrixData) - 1]
            self.addNode(rulesig)
            self.addProjection(rulesig.getOrigin("origin"),
                               calcLast.getTermination("B"))

        #compare the result to the possible answers to determine which is most similar
        if not RPMutils.RUN_WITH_CONTROLLER:
            testSimilarity = similarity.Similarity("testSimilarity", N, d,
                                                   matrixData[4:])
            self.addNode(testSimilarity)

            self.addProjection(calcLast.getOrigin("X"),
                               testSimilarity.getTermination("hypothesis"))
            self.simulator.addProbe("testSimilarity", "result", True)

        if RPMutils.USE_CLEANUP:
            Tprobe = self.simulator.addProbe("cleanT", "clean", True)
        else:
            Tprobe = self.simulator.addProbe("calcT", "T", True)
        answerprobe = self.simulator.addProbe("calcLast", "X", True)

        if RPMutils.USE_CLEANUP and RPMutils.DYNAMIC_MEMORY:
            self.simulator.addSimulatorListener(
                memorylistener.MemoryManagementListener(
                    RPMutils.cleanupDataFile(),
                    RPMutils.cleanupFile(d, RPMutils.VOCAB_SIZE)))

        if RPMutils.RUN_WITH_CONTROLLER:
            self.simulator.addSimulatorListener(
                proberecorder.ProbeRecorder(
                    Tprobe, RPMutils.resultFile("sequencesolver"), 0.05))
            self.simulator.addSimulatorListener(
                proberecorder.ProbeRecorder(
                    answerprobe, RPMutils.hypothesisFile("sequencesolver"),
                    0.05))

        self.setMode(RPMutils.SIMULATION_MODE)
    def reload(self, matrix):
        """Reload network with new matrix information."""

        N = self.N
        d = self.d

        if RPMutils.LOAD_RULES:
            System.out.println(
                "Warning, calling reload when LOAD_RULES is True")

        #reload matrix data
        matrixData = self.loadSequenceMatrix(matrix)

        #remove and re-add input signals
        self.removeProjection(self.getNode("calcT").getTermination("A"))
        self.removeProjection(self.getNode("calcT").getTermination("B"))
        #        self.removeProjection(self.getNode("calcT").getTermination("lrate"))
        self.removeNode("sigA")
        self.removeNode("sigB")
        #        self.removeNode("lrate")

        Ain = matrixData[0]
        Bin = matrixData[1]
        #        lrate = matrixData[2]
        self.addNode(Ain)
        self.addNode(Bin)
        #        self.addNode(lrate)
        self.addProjection(Ain.getOrigin("origin"),
                           self.getNode("calcT").getTermination("A"))
        self.addProjection(Bin.getOrigin("origin"),
                           self.getNode("calcT").getTermination("B"))
        #        self.addProjection(lrate.getOrigin("origin"), self.getNode("calcT").getTermination("lrate"))

        #remove and re-add secondLast signal
        self.removeProjection(self.getNode("calcLast").getTermination("A"))
        self.removeNode("secondLast")

        secondLast = matrixData[3]
        self.addNode(secondLast)
        self.addProjection(secondLast.getOrigin("origin"),
                           self.getNode("calcLast").getTermination("A"))

        #remove and re-add similarity network
        if not RPMutils.RUN_WITH_CONTROLLER:
            self.removeProjection(
                self.getNode("testSimilarity").getTermination("hypothesis"))
            probes = RPMutils.findMatchingProbes(self.simulator.getProbes(),
                                                 "testSimilarity")
            for probe in probes:
                self.simulator.removeProbe(probe)
            self.removeNode("testSimilarity")

            testSimilarity = similarity.Similarity("testSimilarity", N, d,
                                                   matrixData[4:])
            self.addNode(testSimilarity)
            self.addProjection(
                self.getNode("calcLast").getOrigin("X"),
                testSimilarity.getTermination("hypothesis"))
            self.simulator.addProbe("testSimilarity", "result", True)

        if RPMutils.USE_CLEANUP:
            #call reload on memory network, which will reload cleanup memory
            probes = RPMutils.findMatchingProbes(self.simulator.getProbes(),
                                                 "cleaner")
            for probe in probes:
                self.simulator.removeProbe(probe)

            self.getNode("cleanT").reload()

        #reset all probes
        self.simulator.resetProbes()

        self.setMode(RPMutils.SIMULATION_MODE)
    def loadSequenceMatrix(self, cell):
        """Load a matrix in HRR vector format from a file and create corresponding output functions."""

        d = len(cell[0])
        discontinuities = [
            RPMutils.STEP_SIZE, 2 * RPMutils.STEP_SIZE, 3 * RPMutils.STEP_SIZE,
            4 * RPMutils.STEP_SIZE, 5 * RPMutils.STEP_SIZE
        ]
        values1 = [[0 for x in range(6)] for x in range(d)]
        values2 = [[0 for x in range(6)] for x in range(d)]

        #         1.0       2.0      3.0      4.0
        #signal A
        #    cell1    cell2    cell4    cell5    cell7
        #signal B
        #    cell2    cell3    cell5    cell6    cell8

        #values for 0th timestep
        for i in range(d):
            values1[i][0] = cell[0][i]
        for i in range(d):
            values2[i][0] = cell[1][i]

        #values for 1st timestep
        for i in range(d):
            values1[i][1] = cell[1][i]
        for i in range(d):
            values2[i][1] = cell[2][i]

        #values for 2nd timestep
        for i in range(d):
            values1[i][2] = cell[3][i]
        for i in range(d):
            values2[i][2] = cell[4][i]

        #values for 3rd timestep
        for i in range(d):
            values1[i][3] = cell[4][i]
        for i in range(d):
            values2[i][3] = cell[5][i]

        #values for 4th timestep
        for i in range(d):
            values1[i][4] = cell[6][i]
        for i in range(d):
            values2[i][4] = cell[7][i]

        for i in range(d):
            values1[i][5] = 0
            values2[i][5] = 0

        #create signalA
        f = []
        for i in range(d):
            f = f + [PiecewiseConstantFunction(discontinuities, values1[i])]
        sigA = FunctionInput("sigA", f, Units.UNK)

        #create signal B
        f = []
        for i in range(d):
            f = f + [PiecewiseConstantFunction(discontinuities, values2[i])]
        sigB = FunctionInput("sigB", f, Units.UNK)

        #create signal for adaptive learning rate
        rates = [1.0, 1.0 / 2.0, 1.0 / 3.0, 1.0 / 4.0, 1.0 / 5.0, 0.0]
        lrate = FunctionInput(
            "lrate", [PiecewiseConstantFunction(discontinuities, rates)],
            Units.UNK)

        #create signal for second last cell
        f = []
        for i in range(d):
            f = f + [ConstantFunction(1, cell[7][i])]
        secondLast = FunctionInput("secondLast", f, Units.UNK)

        #load rule signal from file
        rulesig = []
        if RPMutils.LOAD_RULES:
            rulefile = open(RPMutils.ruleFile())
            lines = rulefile.readlines()
            rulefile.close()
            mod, rule = lines[0].split(":")
            if mod == "sequencesolver":
                rule = RPMutils.str2floatlist(rule.strip())
            else:
                rule = [0.0 for i in range(self.d)]
            rulesig = RPMutils.makeInputVectors("rulesig", [rule])

        if RPMutils.RUN_WITH_CONTROLLER:
            return ([sigA, sigB, lrate, secondLast] + rulesig)
        else:
            #create signals for answers
            ans = []
            for i in range(8):
                ans = ans + [cell[8 + i]]

            return ([sigA, sigB, lrate, secondLast] + ans + rulesig)
Пример #15
0
 def __init__(self, name, N, d, inputScale=1.0, forgetRate = 0.0, stepsize=1.0):
     NetworkImpl.__init__(self)
     self.name = name
     
     tauPSC = 0.007
     intPSC = 0.1
     smallN = int(math.ceil((float(N)/d) * 2))
     inputWeight = intPSC * 1.0/stepsize * inputScale  
         #weight on input connection
         #we multiply by intPSC as in standard NEF integrator formulation
         #we multiply by 1/stepsize so that the integrator will reach its target value
         #in stepsize rather than the default 1 second
         #then we multiply by the scale on the input
     recurWeight = 1-(intPSC * 1.0/stepsize * forgetRate) #weight on recurrent connection
     
     ef=RPMutils.defaultEnsembleFactory()
     netef = networkensemble.NetworkEnsemble(ef)
     
     intef = RPMutils.NEFMorePoints()
     intef.nodeFactory.tauRC = 0.05
     intef.nodeFactory.tauRef = 0.002
     intef.nodeFactory.maxRate = IndicatorPDF(100, 200)
     intef.nodeFactory.intercept = IndicatorPDF(-1, 1)
     intef.beQuiet()
     
     input = netef.make("input", N, 0.05, [RPMutils.eye(d, 1)], None) #note we run this in non-direct mode to eliminate the "bumps"
     self.addNode(input)   
     
     output = ef.make("output", 1, d)
     output.setMode(SimulationMode.DIRECT) #since this is just a relay ensemble for modularity
     output.fixMode()
     self.addNode(output)
     
     if RPMutils.SPLIT_DIMENSIONS:
         invec = [0 for x in range(d)]
         resultTerm = [[0] for x in range(d)]
         
         for i in range(d):
             intpop = intef.make("intpop_" + str(i), smallN, 1)
             
             invec[i] = inputWeight
             intpop.addDecodedTermination("input", [invec], tauPSC, False)
             invec[i] = 0
             intpop.addDecodedTermination("feedback", [[recurWeight]], intPSC, False)
             self.addNode(intpop)
             
             self.addProjection(input.getOrigin("X"), intpop.getTermination("input"))
             self.addProjection(intpop.getOrigin("X"), intpop.getTermination("feedback"))
             
             resultTerm[i] = [1]
             output.addDecodedTermination("in_" + str(i), resultTerm, 0.0001, False)
             resultTerm[i] = [0]
             
             self.addProjection(intpop.getOrigin("X"), output.getTermination("in_" + str(i)))
     else:
         #do all the integration in one population rather than dividing it up by dimension. note that
         #this will only really work in direct mode.
         
         intpop = intef.make("intpop", N, d)
         intpop.addDecodedTermination("input", RPMutils.eye(d,inputWeight), tauPSC, False)
         intpop.addDecodedTermination("feedback", RPMutils.eye(d,recurWeight), intPSC, False)
         self.addNode(intpop)
         
         self.addProjection(input.getOrigin("X"), intpop.getTermination("input"))
         self.addProjection(intpop.getOrigin("X"), intpop.getTermination("feedback"))
         
         output.addDecodedTermination("in", RPMutils.eye(d,1), 0.0001, False)
         self.addProjection(intpop.getOrigin("X"), output.getTermination("in"))
         
     
     self.exposeTermination(input.getTermination("in_0"), "input")
     self.exposeOrigin(output.getOrigin("X"), "X")           
     
Пример #16
0
    def __init__(self, name, N, d):
        NetworkImpl.__init__(self)
        self.name = name

        tauPSC = 0.007

        Wr = self.calcWreal(d)
        Wi = self.calcWimag(d)

        halfd = int(d / 2) + 1
        halfN = int(math.ceil(float(N) * halfd / d))

        ef = RPMutils.defaultEnsembleFactory()
        netef = networkensemble.NetworkEnsemble(ef)

        #create input populations
        A = ef.make("A", 1, d)
        A.addDecodedTermination("input", RPMutils.eye(d, 1), 0.0001, False)
        A.setMode(SimulationMode.DIRECT
                  )  #since this is just a relay ensemble for modularity
        A.fixMode()
        self.addNode(A)

        B = ef.make("B", 1, d)
        B.addDecodedTermination("input", RPMutils.eye(d, 1), 0.0001, False)
        B.setMode(SimulationMode.DIRECT
                  )  #since this is just a relay ensemble for modularity
        B.fixMode()
        self.addNode(B)

        #this is the new method, where we collapse the fft into the eprod
        #populations to calculate the element-wise product of our vectors so far
        eprods = []

        #note: we scale the output of the eprods by d/2, which we will undo at the
        #end, to keep the overall length of each dimension around 1
        #(the average value of each dimension of a normalized d dimensional vector is 1/sqrt(d),
        #so 1/sqrt(d)*1/sqrt(d) = 1/d, so when we add the scale the resulting average dimension
        #should be around d/2d i.e. 1/2)
        #the 2 is added to give us a bit of a buffer, better to have the dimensions too small
        #than too large and run into saturation problems
        multscale = float(d) / 2.0
        eprods = eprods + [
            eprod.Eprod("eprod0",
                        halfN,
                        halfd,
                        scale=multscale,
                        weights=[Wr, Wr],
                        maxinput=2.0 / math.sqrt(d))
        ]
        eprods = eprods + [
            eprod.Eprod("eprod1",
                        halfN,
                        halfd,
                        scale=multscale,
                        weights=[Wi, Wi],
                        maxinput=2.0 / math.sqrt(d))
        ]
        eprods = eprods + [
            eprod.Eprod("eprod2",
                        halfN,
                        halfd,
                        scale=multscale,
                        weights=[Wi, Wr],
                        maxinput=2.0 / math.sqrt(d))
        ]
        eprods = eprods + [
            eprod.Eprod("eprod3",
                        halfN,
                        halfd,
                        scale=multscale,
                        weights=[Wr, Wi],
                        maxinput=2.0 / math.sqrt(d))
        ]

        for i in range(4):
            self.addNode(eprods[i])

            self.addProjection(A.getOrigin("X"), eprods[i].getTermination("A"))
            self.addProjection(B.getOrigin("X"), eprods[i].getTermination("B"))

        #negative identity matrix (for subtraction)
        negidentity = [[0 for x in range(d)] for x in range(d)]
        for i in range(d):
            negidentity[i][i] = -1

        #note: all this halfd/expansion stuff is because the fft of a real value
        #is symmetrical, so we do all our computations on just one half and then
        #add in the symmetrical other half at the end

        #matrix for expanding real half-vectors (with negative for subtraction)
        expand = RPMutils.eye(halfd, 1)
        negexpand = RPMutils.eye(halfd, -1)

        #matrix for expanding imaginary half-vectors
        imagexpand = RPMutils.eye(halfd, 1)

        midpoint = halfd - 1 - (d + 1) % 2
        for i in range(int(math.ceil(d / 2.0) - 1)):
            expand = expand + [expand[midpoint - i]]
            negexpand = negexpand + [negexpand[midpoint - i]]

            imagexpand = imagexpand + [[-x for x in imagexpand[midpoint - i]]]

        #multiply real components
        rprod = netef.make("rprod", N, tauPSC, [expand, negexpand], None)
        self.addNode(rprod)
        self.addProjection(eprods[0].getOrigin("X"),
                           rprod.getTermination("in_0"))
        self.addProjection(eprods[1].getOrigin("X"),
                           rprod.getTermination("in_1"))

        #multiply imaginary components
        iprod = netef.make("iprod", N, tauPSC, [imagexpand, imagexpand], None)
        self.addNode(iprod)
        self.addProjection(eprods[2].getOrigin("X"),
                           iprod.getTermination("in_0"))
        self.addProjection(eprods[3].getOrigin("X"),
                           iprod.getTermination("in_1"))

        #now calculate IFFT of Z = (rprod) + (iprod)i
        #we only need to calculate the real part, since we know the imaginary component is 0
        Winvr = self.calcInvWreal(d)
        Winvi = self.calcInvWimag(d)

        for i in range(d):
            for j in range(d):
                Winvr[i][j] = Winvr[i][j] * (1.0 / multscale)
                Winvi[i][j] = Winvi[i][j] * (1.0 / multscale)

        negWinvi = [[0 for x in range(d)] for x in range(d)]
        for i in range(d):
            for j in range(d):
                negWinvi[i][j] = -Winvi[i][j]

        result = netef.make("result", N, tauPSC, [Winvr, negWinvi], None)

        self.addNode(result)

        self.addProjection(rprod.getOrigin("X"), result.getTermination("in_0"))
        self.addProjection(iprod.getOrigin("X"), result.getTermination("in_1"))

        if RPMutils.USE_PROBES:
            self.simulator.addProbe("A", "X", True)
            self.simulator.addProbe("B", "X", True)
            self.simulator.addProbe("eprod0", "X", True)
            self.simulator.addProbe("eprod1", "X", True)
            self.simulator.addProbe("eprod2", "X", True)
            self.simulator.addProbe("eprod3", "X", True)
            self.simulator.addProbe("rprod", "X", True)
            self.simulator.addProbe("iprod", "X", True)
            self.simulator.addProbe("result", "X", True)

        self.exposeTermination(A.getTermination("input"), "A")
        self.exposeTermination(B.getTermination("input"), "B")
        self.exposeOrigin(result.getOrigin("X"), "X")
Пример #17
0
def genVocab50(d, seed):
    """Vocabulary for 50 base words."""
    
    numwords = 50
    vocab = [[None,None] for i in range(numwords*2)]
    
    PDFTools.setSeed(seed)
#    for i in range(numwords):
#        vocab[i][1] = genVector(d)
    vocab = fillVectors(vocab, d, numwords, RPMutils.VECTOR_SIMILARITY)
    
    PDFTools.setSeed(long(time.time()))
    
    #attributes
    vocab[0][0] = "shape"
    vocab[1][0] = "number" 
    vocab[2][0] = "linestroke"
    vocab[3][0] = "angle"
    vocab[4][0] = "length"
    vocab[5][0] = "rpos"
    vocab[6][0] = "hpos"
    vocab[7][0] = "vpos"
    vocab[8][0] = "shading"
    vocab[9][0] = "existence"
    vocab[10][0] = "linetype"
    vocab[11][0] = "width"


 
     
    #values
    
    #misc
    vocab[12][0] = "present"
    vocab[13][0] = "null"
    vocab[14][0] = "rubbish"
    
    #number
    vocab[15][0] = "zero"
    vocab[16][0] = "one"
    vocab[17][0] = "plusone"
    
    #angle
    vocab[18][0] = "0deg"
    vocab[19][0] = "plus45deg"
    
    #shape
    vocab[20][0] = "circle"
    vocab[21][0] = "square" 
    vocab[22][0] = "diamond"
    vocab[23][0] = "dot"
    vocab[24][0] = "triangle"
    vocab[25][0] = "cross"
    vocab[26][0] = "X"
    vocab[27][0] = "rectangle"
    
    #linestroke
    vocab[28][0] = "normal"
    vocab[29][0] = "dashed"
    vocab[30][0] = "bold"
    
    #linetype
    vocab[31][0] = "straight"
    vocab[32][0] = "curved"
    vocab[33][0] = "wavy"
#    vocab[34][0] = 

    #length
    vocab[35][0] = "short"
    vocab[36][0] = "longer"
    
    #radialpos/horizopos/verticpos
    vocab[37][0] = "rinner"
    vocab[38][0] = "hleft"
    vocab[39][0] = "vbottom"
    vocab[40][0] = "moveout"
    vocab[41][0] = "moveright"
    vocab[42][0] = "moveup"
    
    #shading
    vocab[43][0] = "none"
    vocab[44][0] = "solid"
    vocab[45][0] = "lefthatch"
    vocab[46][0] = "righthatch"
    vocab[47][0] = "crosshatch"
    vocab[48][0] = "vertical"
    vocab[49][0] = "horizontal"
    
    #now the higher level vocabulary
    vocab[50][0] = "two"
    vocab[50][1] = RPMutils.normalize(RPMutils.cconv(vocab[16][1], vocab[17][1]))
    vocab[51][0] = "three"
    vocab[51][1] = RPMutils.normalize(RPMutils.cconv(vocab[50][1], vocab[17][1]))
    vocab[52][0] = "four"
    vocab[52][1] = RPMutils.normalize(RPMutils.cconv(vocab[51][1], vocab[17][1]))
    
    vocab[55][0] = "45deg"
    vocab[55][1] = RPMutils.normalize(RPMutils.cconv(vocab[18][1], vocab[19][1]))
    vocab[56][0] = "90deg"
    vocab[56][1] = RPMutils.normalize(RPMutils.cconv(vocab[55][1], vocab[19][1]))
    vocab[57][0] = "135deg"
    vocab[57][1] = RPMutils.normalize(RPMutils.cconv(vocab[56][1], vocab[19][1]))
    vocab[58][0] = "180deg"
    vocab[58][1] = RPMutils.normalize(RPMutils.cconv(vocab[57][1], vocab[19][1]))
    vocab[59][0] = "225deg"
    vocab[59][1] = RPMutils.normalize(RPMutils.cconv(vocab[58][1], vocab[19][1]))
    vocab[60][0] = "270deg"
    vocab[60][1] = RPMutils.normalize(RPMutils.cconv(vocab[59][1], vocab[19][1]))
    vocab[61][0] = "315deg"
    vocab[61][1] = RPMutils.normalize(RPMutils.cconv(vocab[60][1], vocab[19][1]))
    
    vocab[65][0] = "rmiddle"
    vocab[65][1] = RPMutils.normalize(RPMutils.cconv(vocab[37][1], vocab[40][1]))
    vocab[66][0] = "router"
    vocab[66][1] = RPMutils.normalize(RPMutils.cconv(vocab[65][1], vocab[40][1]))
    
    vocab[67][0] = "hmiddle"
    vocab[67][1] = RPMutils.normalize(RPMutils.cconv(vocab[38][1], vocab[41][1]))
    vocab[68][0] = "hright"
    vocab[68][1] = RPMutils.normalize(RPMutils.cconv(vocab[67][1], vocab[41][1]))
    
    vocab[69][0] = "vmiddle"
    vocab[69][1] = RPMutils.normalize(RPMutils.cconv(vocab[39][1], vocab[42][1]))
    vocab[70][0] = "vtop"
    vocab[70][1] = RPMutils.normalize(RPMutils.cconv(vocab[69][1], vocab[42][1]))
    
    vocab[71][0] = "medium"
    vocab[71][1] = RPMutils.normalize(RPMutils.cconv(vocab[35][1], vocab[36][1]))
    vocab[72][0] = "long"
    vocab[72][1] = RPMutils.normalize(RPMutils.cconv(vocab[71][1], vocab[36][1]))
    
    output = open(RPMutils.vocabFile(d, numwords, seed), "w")
    for i in range(len(vocab)):
        if vocab[i][0] != None:
            output.write(vocab[i][0] + " " + RPMutils.floatlist2str(vocab[i][1]) + "\n")
    output.close()
    def makeNetwork(self, name, N, tauPSC, matrices, outputfuncs):
        """Create a network ensemble that splits by dimension."""

        Main = NetworkImpl()
        Main.name = name

        numin = len(matrices)  #number of inputs
        din = [0 for i in range(numin)]  #dimension of each input
        for i in range(numin):
            din[i] = len(matrices[i][0])

        dout = len(matrices[0])  #dimension of output

        smallN = int(math.ceil(float(N) / dout))  #neurons per population
        defef = RPMutils.defaultEnsembleFactory()

        #create input populations (just relay nodes)
        inputs = []
        for i in range(numin):
            inputs = inputs + [defef.make("in_" + str(i), 1, din[i])]
            inputs[i].addDecodedTermination("input", RPMutils.eye(din[i], 1),
                                            0.0001, False)
            Main.exposeTermination(inputs[i].getTermination("input"),
                                   "in_" + str(i))
            Main.addNode(inputs[i])
            inputs[i].setMode(SimulationMode.DIRECT)
            inputs[i].fixMode()

        #output population (another relay node)
        output = defef.make("output", 1, dout)
        Main.exposeOrigin(output.getOrigin("X"), "X")
        Main.addNode(output)
        output.setMode(SimulationMode.DIRECT)
        output.fixMode()

        resultTerm = [[0] for x in range(dout)]

        #create dimension populations
        for i in range(dout):
            pop = self.ef.make("mid_" + str(i), smallN, 1)
            Main.addNode(pop)

            for j in range(numin):
                pop.addDecodedTermination("in_" + str(j), [matrices[j][i]],
                                          tauPSC, False)
                Main.addProjection(inputs[j].getOrigin("X"),
                                   pop.getTermination("in_" + str(j)))

            resultTerm[i] = [1]
            output.addDecodedTermination("in_" + str(i), resultTerm, 0.0001,
                                         False)
            resultTerm[i] = [0]

            if outputfuncs == None:
                Main.addProjection(pop.getOrigin("X"),
                                   output.getTermination("in_" + str(i)))
            else:
                pop.addDecodedOrigin("output", [outputfuncs[i]], "AXON")
                Main.addProjection(pop.getOrigin("output"),
                                   output.getTermination("in_" + str(i)))

        return Main