Пример #1
0
    np.random.seed(args.manualSeed)
    torch.manual_seed(args.manualSeed)
    if cfg.CUDA:
        torch.cuda.manual_seed_all(args.manualSeed)

    ##########################################################################
    output_dir = '../output/%s' % (cfg.CONFIG_NAME)

    model_dir = os.path.join(output_dir, 'Model')
    image_dir = os.path.join(output_dir, 'Image')
    log_dir = os.path.join(output_dir, 'Log')
    mkdir_p(model_dir)
    mkdir_p(image_dir)
    mkdir_p(log_dir)

    logger = setup_logger(name=cfg.CONFIG_NAME, save_dir=log_dir)

    torch.cuda.set_device(cfg.GPU_ID)
    cudnn.benchmark = True

    # Get data loader ##################################################
    imsize = cfg.TREE.BASE_SIZE * (2**(cfg.TREE.BRANCH_NUM - 1))
    batch_size = cfg.TRAIN.BATCH_SIZE
    if cfg.TRAIN.TRANS == 'org':
        image_transform = transforms.Compose([
            transforms.Scale(int(imsize * 76 / 64)),
            transforms.RandomCrop(imsize),
            transforms.RandomHorizontalFlip()
        ])
    else:
        image_transform = transforms.Compose([
Пример #2
0
    if args.data_dir != '':
        cfg.DATA_DIR = args.data_dir

    assert 'real' in cfg.CONFIG_NAME

    output_dir = '../output/%s_%s' % \
        (cfg.DATASET_NAME, cfg.CONFIG_NAME)

    log_dir = output_dir + '/log'
    mkdir_p(output_dir)
    mkdir_p(output_dir + '/imgs')
    mkdir_p(output_dir + '/models')
    mkdir_p(log_dir)

    logger = setup_logger(cfg.CONFIG_NAME, log_dir)
    logger.info('Using config:')
    logger.info(str(cfg))

    if not cfg.TRAIN.FLAG:
        args.manualSeed = 100
    elif args.manualSeed is None:
        args.manualSeed = 100
        #args.manualSeed = random.randint(1, 10000)
    logger.info("seed now is : ", str(args.manualSeed))

    random.seed(args.manualSeed)
    np.random.seed(args.manualSeed)
    torch.manual_seed(args.manualSeed)
    #if cfg.CUDA:
    torch.cuda.manual_seed_all(args.manualSeed)
Пример #3
0
        cfg.GPU_ID = args.gpu_id

    if args.data_dir != '':
        cfg.DATA_DIR = args.data_dir

    output_dir = '../output/%s_%s' % \
        (cfg.DATASET_NAME, cfg.CONFIG_NAME)

    log_dir = output_dir + '/log'
    mkdir_p(output_dir)
    mkdir_p(output_dir+'/imgs')
    mkdir_p(output_dir+'/models')
    mkdir_p(log_dir)

    #logger = setup_logger(cfg.CONFIG_NAME,log_dir)
    logger = setup_logger(cfg.CONFIG_NAME,'')
    logger.info('Using config:')
    logger.info(cfg)

    if not cfg.TRAIN.FLAG:
        args.manualSeed = 100
    elif args.manualSeed is None:
        args.manualSeed = 100
        #args.manualSeed = random.randint(1, 10000)
    
    logger.info("seed now is : ",args.manualSeed)
    random.seed(args.manualSeed)
    np.random.seed(args.manualSeed)
    torch.manual_seed(args.manualSeed)
    if cfg.CUDA:
        torch.cuda.manual_seed_all(args.manualSeed)