Пример #1
0
    def Execute3D(self, w):
        ##
        ## Load image
        ##
        filestack = self.ObtainTarget()
        params = self.ObtainParamsBottomTable(self.obj_args, self.args)
        output_path = params['Output Folder']
        if len(output_path) == 0:
            print('Output folder unspecified.')
            return False
        #
        numz = len(filestack)
        # size = cv2.imread(filestack[0], cv2.IMREAD_GRAYSCALE).shape
        check_attribute = m.imread(filestack[0], flags=cv2.IMREAD_GRAYSCALE)
        tsize = check_attribute.shape
        tdtype = check_attribute.dtype
        input_volume = np.zeros([tsize[0], tsize[1], numz], tdtype)

        print('Loading images ...')
        for zi, filename in enumerate(filestack):
            # input_volume[:, :, zi] = cv2.imread(filename, cv2.IMREAD_GRAYSCALE).astype(tdtype)
            input_volume[:, :, zi] = m.imread(filename,
                                              flags=cv2.IMREAD_GRAYSCALE)
        ##
        ## 2D/3D filter application
        ##
        for i in range(w.count()):
            item = w.item(i)
            text = item.text()
            instance = item.data(Qt.UserRole)
            params = self.ObtainParamsFilter(instance.args)
            type = self.fi.get_type(text)
            cls = self.fi.get_class(text)

            if type == '2d':
                for zi in range(numz):
                    input_image = input_volume[:, :, zi]
                    output_image = cls.Filter(self, input_image, params)
                    input_volume[:, :, zi] = output_image
            elif type == '3d':
                tmp = cls.Filter(self, input_volume, params)
                input_volume = tmp.astype(np.uint16)

        # Unlock Folder
        m.UnlockFolder(self.parent.u_info, output_path)
        # Save segmentation
        print('Saving images ...')
        for zi, filename in enumerate(filestack):
            output_name = os.path.basename(filename)
            savename = os.path.join(output_path, output_name)
            root, ext = os.path.splitext(savename)
            if ext == ".tif" or ext == ".tiff" or ext == ".TIF" or ext == ".TIFF":
                m.save_tif16(input_volume[:, :, zi], savename)
            elif ext == ".png" or ext == ".PNG":
                m.save_png16(input_volume[:, :, zi], savename)
        print('2D/3D filters were applied!')
        # Lock Folder
        m.LockFolder(self.parent.u_info, output_path)
Пример #2
0
    def _Run(self, parent, params, comm_title):
        ##
        print('Start postprocesing.')
        print(params['Output Filetype'])

        data = np.load(params['Target Sementation File (npz)'])
        print('File contents :', data.files)
        segmentation = data['segmentation']
        print('Segmentation image size: ', segmentation.shape)
        filetype = params['Output Filetype']
        ##
        ##
        if (filetype == '8-bit color PNG') or (filetype == '8-bit color TIFF'):
            ids = np.max(segmentation)
            print('Max segmentation ID: ', ids)
            colormap = np.random.randint(255,
                                         size=(ids + 2, 3),
                                         dtype=np.uint64)
            colormap[0, :] = 0
        ##
        m.UnlockFolder(parent.u_info, params['Output Segmentation Folder'])
        ##
        for idz in range(segmentation.shape[0]):
            image2d = segmentation[idz, :, :]
            print('image2d size: ', image2d.shape)

            if filetype == '16-bit gray scale TIFF':
                filename = os.path.join(params['Output Segmentation Folder'],
                                        'z{:0=4}.tif'.format(idz))
                m.save_tif16(image2d, filename)
            elif filetype == '8-bit gray scale TIFF':
                filename = os.path.join(params['Output Segmentation Folder'],
                                        'z{:0=4}.tif'.format(idz))
                m.save_tif8(image2d, filename)
            elif filetype == '16-bit gray scale PNG':
                filename = os.path.join(params['Output Segmentation Folder'],
                                        'z{:0=4}.png'.format(idz))
                m.save_png16(image2d, filename)
            elif filetype == '8-bit gray scale PNG':
                filename = os.path.join(params['Output Segmentation Folder'],
                                        'z{:0=4}.png'.format(idz))
                m.save_png8(image2d, filename)
            elif filetype == '8-bit color PNG':
                filename = os.path.join(params['Output Segmentation Folder'],
                                        'z{:0=4}.png'.format(idz))
                m.save_pngc(image2d, filename, colormap)
            elif filetype == '8-bit color TIFF':
                filename = os.path.join(params['Output Segmentation Folder'],
                                        'z{:0=4}.tif'.format(idz))
                m.save_tifc(image2d, filename, colormap)
            else:
                print('Data was not saved.')
        ##
        print(comm_title, 'was finished.')
        flag = m.LockFolder(parent.u_info,
                            params['Output Segmentation Folder'])
        return flag
Пример #3
0
    def Execute2D(self, w):
        ##
        ## Input files /Output folder
        ##
        self.filestack = self.ObtainTarget()
        params = self.ObtainParamsBottomTable(self.obj_args, self.args)
        output_path = params['Output Folder']
        if len(output_path) == 0:
            print('Output folder unspecified.')
            return False
        # Unlock Folder
        m.UnlockFolder(self.parent.u_info, output_path)

        for filename in self.filestack:
            print(filename)
            output_name = os.path.basename(filename)
            # input_image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE)
            input_image = m.imread(filename, flags=cv2.IMREAD_GRAYSCALE)
            output_image = self.FilterApplication2D(w, input_image)
            output_dtype = output_image.dtype
            savename = os.path.join(output_path, output_name)
            root, ext = os.path.splitext(savename)
            if ext == ".tif" or ext == ".tiff" or ext == ".TIF" or ext == ".TIFF":
                if output_dtype == 'uint16':
                    m.save_tif16(output_image, savename)
                elif output_dtype == 'uint8':
                    m.save_tif8(output_image, savename)
                else:
                    print('dtype mismatch: ', output_dtype)
            elif ext == ".png" or ext == ".PNG":
                if output_dtype == 'uint16':
                    m.save_png16(output_image, savename)
                elif output_dtype == 'uint8':
                    m.save_png8(output_image, savename)
                else:
                    print('dtype mismatch: ', output_dtype)
        print('2D filters were applied!')
        # Lock Folder
        m.LockFolder(self.parent.u_info, output_path)
Пример #4
0
    def run(self, u_info, dir, fname, ftype, startid, numdigit, flag):

        ## Load DB
        db = DB(u_info)
        print("Tile Num: z {0}, y {1}, x {2}".format(db.num_tiles_z, db.num_tiles_y, db.num_tiles_x))

        ## Makedir
        #self.mkdir_safe(dir)

        ## Save ColorInfo & SegmentationInfo
        if flag == 'ids':
            self.save_color_data(u_info, dir)
            self.save_segmentInfo(u_info, dir)

        ## Volume storage
        VOLUME_FORMAT = ["MTIF16G", "MTIF8G", "MTIF8C","NUMPY32", "NUMPY32C","HDF64"]
        if ftype in VOLUME_FORMAT:
            volume_images_ids = np.zeros((db.num_voxels_z, db.num_voxels_y, db.num_voxels_x), np.uint32)

        ##
        ## Export image/segmentation files
        ##
        print("Tile Num: z {0}, y {1}, x {2}".format(db.num_tiles_z, db.num_tiles_y, db.num_tiles_x))
        iw = 0
        for iz in range(db.num_tiles_z): # 100): # 

            print("iz ", iz)
            merged_images_ids = np.zeros( ( db.canvas_size_y, db.canvas_size_x ), np.uint32 )
            tile_image = []
            for iy, ix in itertools.product( range(db.num_tiles_y), range(db.num_tiles_x)):

                if flag == 'images':
                    filename = u_info.tile_images_path + u_info.tile_images_filename_wzyx.format(iw, iz, iy, ix)
                    print(filename)
                    tile_image = PIL.Image.open(filename)
                elif flag == 'ids' :
                    filename = u_info.tile_ids_path + u_info.tile_ids_filename_wzyx.format(iw, iz, iy, ix)
                    print(filename)
                    tile_image = m.load_hdf5(filename, u_info.tile_var_name)
                else:
                    return False

                y = iy * db.num_voxels_per_tile_y
                x = ix * db.num_voxels_per_tile_x
                merged_images_ids[  y : y + db.num_voxels_per_tile_y, x : x + db.num_voxels_per_tile_x ] = tile_image

            # Crop by original image size
            merged_images_ids = merged_images_ids[  0:db.num_voxels_y, 0:db.num_voxels_x ]

            # Filename setting
            # u_info, dir, fname, ftype, startid, numdigit
            current_frefix = dir + os.sep + fname + str(int(iz+startid)).zfill(numdigit)
            print(current_frefix)
            #

            if ftype in VOLUME_FORMAT:
                volume_images_ids[iz,:,:] = merged_images_ids
            elif ftype == "PNG16G":
                m.save_png16(merged_images_ids, current_frefix+".png")
            elif ftype == "PNG8G":
                m.save_png8(merged_images_ids, current_frefix+".png")
            elif ftype == "PNG8C":
                colordata = m.load_hdf5(u_info.color_map_file, u_info.hdf_color_name)
                m.save_pngc(merged_images_ids, current_frefix+".png", colordata)
            elif ftype == "TIF16G":
                m.save_tif16(merged_images_ids, current_frefix+".tif")
            elif ftype == "TIF8G":
                m.save_tif8(merged_images_ids, current_frefix+".tif")
            elif ftype == "TIF8C":
                colordata = m.load_hdf5(u_info.color_map_file, u_info.hdf_color_name)
                m.save_tifc(merged_images_ids, current_frefix+".tif", colordata)
            else:
                print("Export filetype error (Internal Error).")
        ###
        ###

        current_frefix = dir + os.sep + fname
        print('Save file to ', current_frefix)
        if ftype == "MTIF16G":
            volume_images_ids = volume_images_ids.astype(np.uint16)
            tifffile.imsave(current_frefix + ".tif", volume_images_ids)
        elif ftype == "MTIF8G":
            volume_images_ids = volume_images_ids.astype(np.uint8)
            tifffile.imsave(current_frefix + ".tif", volume_images_ids)
        elif ftype == "MTIF8C":
            print('Multi-tiff 8 color, save.')
            colordata = m.load_hdf5(u_info.color_map_file, u_info.hdf_color_name)
            volume_images_ids = self.gen_col_multi(volume_images_ids, colordata)
            tifffile.imsave(current_frefix + ".tif", volume_images_ids)
        elif ftype == "NUMPY32":
            volume_images_ids = volume_images_ids.astype(np.uint32)
            np.save(current_frefix + ".npy", volume_images_ids)
        elif ftype == "NUMPY32C":
            volume_images_ids = volume_images_ids.astype(np.uint32)
            np.savez(current_frefix + ".npz", stack=volume_images_ids)
        elif ftype == "HDF64":
            volume_images_ids = volume_images_ids.astype(np.int64)
            m.save_hdf5(current_frefix + ".h5", "stack", volume_images_ids)


        print('Images/segmentations were Exported.')