Пример #1
0
 def play(self, path):
     runner = LocalPacmanGameRunner(layout_path=path,
                                    random_ghosts=True,
                                    show_window=True,
                                    zoom_window=1.0,
                                    frame_time=0.1,
                                    timeout=-1000)
     game = runner.run_game(self)
Пример #2
0
def playOneGame(layouts, numberOfGames, training, optilio, numTraining):
    for layout in layouts:
        with open("weights.txt") as f:
            weights = [float(x) for x in f.readline().split()]

        agent = ApproxAgent(train=training,
                            optilio=optilio,
                            numTraining=numTraining,
                            weights_values=weights)

        runner = LocalPacmanGameRunner(layout, random_ghosts=False)
        game = runner.run_game(agent)
Пример #3
0
def load_runners():
    paths = ['pacman_layouts/' + f for f in os.listdir('pacman_layouts')]
    random_ghosts = [False, True]

    runners, names = [], []
    for p in paths:
        for rg in random_ghosts:
            runner = LocalPacmanGameRunner(layout_path=p,
                                           random_ghosts=rg,
                                           frame_time=0)
            runners.append(runner)
            names.append(p.split('/')[1] + '__random_ghosts={}'.format(rg))
    assert len(runners) == len(names)
    return runners, names
Пример #4
0
def playGame(layouts, numberOfGames, training, optilio, numTraining):
    for layout in layouts:
        print(">>> ------------------------------ >>>")
        print(layout)

        with open("weights.txt") as f:
            weights = [float(x) for x in f.readline().split()]

        # weights = [0,0,0,0]
        # weights = [-27.9914705800362, -3394.38754114026, 334.87185911475, -60.5944964389825]

        # random
        # 237.0996722631916 -4588.853575536811 245.5868697927386 -84.61209079023303
        # zeros
        # 131.6082538875898 -3662.5998496219695 293.8740546541827 -29.798118394469327
        # 157.61426275835402 -3713.705833105122 -35.71944232589656 296.6912552309395
        # again from above
        # -14.760990254051723 -4567.035436781129 372.17484562084405 274.64338077262755

        agent = ApproxAgent(train=training,
                            optilio=optilio,
                            numTraining=numTraining,
                            weights_values=weights)

        runner = LocalPacmanGameRunner(layout, random_ghosts=False)
        games = []
        for i in range(numberOfGames):
            game = runner.run_game(agent)
            games.append(game)

        scores = [game.state.getScore() for game in games]
        results = np.array([game.state.isWin() for game in games])
        print("Avg score >>:     {:0.2f}".format(np.mean(scores)))
        print("Median score:  {:0.2f}".format(np.median(scores)))
        print("Win Rate:      {}/{} {:0.2f}".format(results.sum(),
                                                    len(results),
                                                    results.mean()))
Пример #5
0
if __name__ == "__main__":
    args = parse_args()

    # Fix the random seed
    if args.seed is not None:
        seeds = generate_deterministic_seeds(args.seed, args.num_games)
    else:
        seeds = None
    # Choose a Pacman agent
    AgentClass = load_agent(args.agent)
    agent = AgentClass()
    from misio.pacman.pacman import LocalPacmanGameRunner

    runner = LocalPacmanGameRunner(layout_dir=args.layout,
                                   random_ghosts=args.random_ghosts,
                                   show_window=not args.no_graphics,
                                   zoom_window=args.zoom,
                                   frame_time=args.frame_time)

    games = []
    for i in tqdm.trange(args.num_games, leave=False):
        if seeds is not None:
            random.seed(seeds[i])
        game = runner.run_game(agent)
        games.append(game)
    scores = [game.state.getScore() for game in games]
    results = np.array([game.state.isWin() for game in games])
    print("Avg score:     {:0.2f}".format(np.mean(scores)))
    print("Best score:    {:0.2f}".format(max(scores)))
    print("Median score:  {:0.2f}".format(np.median(scores)))
    print("Worst score:   {:0.2f}".format(min(scores)))
Пример #6
0
    args = parse_args()

    # Fix the random seed

    if args.seed is not None:
        seeds = generate_deterministic_seeds(args.seed, args.num_games)
    else:
        seeds = None
    # Choose a Pacman agent
    AgentClass = load_agent(args.agent)
    agent = AgentClass()
    from misio.pacman.pacman import LocalPacmanGameRunner

    runner = LocalPacmanGameRunner(layout_path=args.layout,
                                   random_ghosts=not args.smart_ghosts,
                                   show_window=not args.no_graphics,
                                   zoom_window=args.zoom,
                                   frame_time=args.frame_time,
                                   timeout=-1000)

    games = []
    for i in tqdm.trange(args.num_games, leave=False):
        if seeds is not None:
            random.seed(seeds[i])
        game = runner.run_game(agent)
        games.append(game)
    scores = [game.state.getScore() for game in games]
    results = np.array([game.state.isWin() for game in games])
    print("Avg score:     {:0.2f}".format(np.mean(scores)))
    print("Best score:    {:0.2f}".format(max(scores)))
    print("Median score:  {:0.2f}".format(np.median(scores)))
    print("Worst score:   {:0.2f}".format(min(scores)))
Пример #7
0
import numpy as np

from lab6.qlearningAgents import PacmanQAgent
from misio.pacman.pacman import LocalPacmanGameRunner

if __name__ == "__main__":
    agent = PacmanQAgent()

    "*** DISABLE TRAINING HERE ***"

    all_results = []
    for (dirpath, dirnames, filenames) in walk("sample_solution/pacman_layouts"):
        for layout in filenames:
            runner = LocalPacmanGameRunner(layout_path=f"{dirpath}/{layout}",
                                           random_ghosts=True,
                                           show_window=False,
                                           timeout=-1000)

            games = []
            for i in range(10):
                game = runner.run_game(agent)
                games.append(game)
            scores = [game.state.getScore() for game in games]
            results = np.array([game.state.isWin() for game in games])

            all_results += list(results)

            print(layout)
            print(f"Avg score:     {np.mean(scores):0.2f}")
            print(f"Best score:    {max(scores):0.2f}")
            print(f"Median score:  {np.median(scores):0.2f}")
Пример #8
0
    args = parse_args()

    # Fix the random seed

    if args.seed is not None:
        seeds = generate_deterministic_seeds(args.seed, args.num_games)
    else:
        seeds = None
    # Choose a Pacman agent
    AgentClass = load_agent(args.agent)
    agent = AgentClass()
    

    runner = LocalPacmanGameRunner(args.layout,
                                   not args.smart_ghosts,
                                   not args.no_graphics,
                                   args.zoom,
                                   args.frame_time)

    games = []
    for i in tqdm.trange(args.num_games, leave=False):
        if seeds is not None:
            random.seed(seeds[i])
        game = runner.run_game(agent)
        games.append(game)
    scores = [game.state.getScore() for game in games]
    results = np.array([game.state.isWin() for game in games])
    print("Avg score:     {:0.2f}".format(np.mean(scores)))
    print("Best score:    {:0.2f}".format(max(scores)))
    print("Median score:  {:0.2f}".format(np.median(scores)))
    print("Worst score:   {:0.2f}".format(min(scores)))