Пример #1
0
    def _setup_svm(self, examples, classes, C):
        kernel = kernel_by_name(self.kernel, gamma=self.gamma, p=self.p)
        n = len(examples)
        e = np.matrix(np.ones((n, 1)))

        # Kernel and Hessian
        if kernel is None:
            K = None
            H = None
        else:
            K = _smart_kernel(kernel, examples)
            D = spdiag(classes)
            H = D * K * D

        # Term for -sum of alphas
        f = -e

        # Sum(y_i * alpha_i) = 0
        A = classes.T.astype(float)
        b = np.matrix([0.0])

        # 0 <= alpha_i <= C
        lb = np.matrix(np.zeros((n, 1)))
        if type(C) == float:
            ub = C * e
        else:
            # Allow for C to be an array
            ub = C
        return K, H, f, A, b, lb, ub
Пример #2
0
 def predict(self, bags):
     """
     @param bags : a sequence of n bags; each bag is an m-by-k array-like
                   object containing m instances with k features
     @return : an array of length n containing real-valued label predictions
               (threshold at zero to produce binary predictions)
     """
     if self._sv_bags is None or len(self._sv_bags) == 0:
         return np.zeros(len(bags))
     else:
         kernel = kernel_by_name(self.kernel, p=self.p, gamma=self.gamma)
         K = kernel(map(np.asmatrix, bags), self._sv_bags)
         return np.array(self._b + K * spdiag(self._sv_y) * self._sv_alphas).reshape((-1,))
Пример #3
0
 def predict(self, bags):
     """
     @param bags : a sequence of n bags; each bag is an m-by-k array-like
                   object containing m instances with k features
     @return : an array of length n containing real-valued label predictions
               (threshold at zero to produce binary predictions)
     """
     if self._sv_bags is None or len(self._sv_bags) == 0:
         return np.zeros(len(bags))
     else:
         kernel = kernel_by_name(self.kernel, p=self.p, gamma=self.gamma)
         K = kernel(list(map(np.asmatrix, bags)), self._sv_bags)
         return np.array(self._b + K * spdiag(self._sv_y) * self._sv_alphas).reshape((-1,))
Пример #4
0
 def predict(self, X):
     """
     @param X : an n-by-m array-like object containing n examples with m
                features
     @return : an array of length n containing real-valued label predictions
               (threshold at zero to produce binary predictions)
     """
     if self._sv_X is None or len(self._sv_X) == 0:
         return np.zeros(len(X))
     else:
         kernel = kernel_by_name(self.kernel, p=self.p, gamma=self.gamma)
         K = kernel(np.asmatrix(X), self._sv_X)
         return np.array(self._b + K * spdiag(self._sv_y) * self._sv_alphas).reshape((-1,))
Пример #5
0
 def predict(self, bags):
     """
     @param bags : a sequence of n bags; each bag is an m-by-k array-like
                   object containing m instances with k features
     @return : an array of length n containing real-valued label predictions
               (threshold at zero to produce binary predictions)
     """
     if self._b is None:
         return np.zeros(len(bags))
     else:
         bags = [np.asmatrix(bag) for bag in bags]
         k = kernel_by_name(self.kernel, p=self.p, gamma=self.gamma)
         D = spdiag(self._y)
         return np.array([np.max(self._b + self._alphas.T * D * self._V *
                                 k(self._X, bag))
                          for bag in bags])
Пример #6
0
    def fit(self, bags, y):
        """
        @param bags : a sequence of n bags; each bag is an m-by-k array-like
                      object containing m instances with k features
        @param y : an array-like object of length n containing -1/+1 labels
        """
        def transform(mx):
            """
            Transform into np.matrix if array/list
            ignore scipy.sparse matrix
            """
            if issparse(mx):
                return mx.todense()
            return np.asmatrix(mx)

        self._bags = [transform(bag) for bag in bags]
        y = np.asmatrix(y).reshape((-1, 1))

        bs = BagSplitter(self._bags, y)
        best_obj = float('inf')
        best_svm = None
        for rr in range(self.restarts + 1):
            if rr == 0:
                if self.verbose:
                    print('Non-random start...')
                pos_bag_avgs = np.vstack(
                    [np.average(bag, axis=0) for bag in bs.pos_bags])
            else:
                if self.verbose:
                    print('Random restart %d of %d...' % (rr, self.restarts))
                pos_bag_avgs = np.vstack(
                    [rand_convex(len(bag)) * bag for bag in bs.pos_bags])

            intial_instances = np.vstack([bs.neg_instances, pos_bag_avgs])
            classes = np.vstack([-np.ones((bs.L_n, 1)), np.ones((bs.X_p, 1))])

            # Setup SVM and QP
            if self.scale_C:
                C = self.C / float(len(intial_instances))
            else:
                C = self.C
            setup = self._setup_svm(intial_instances, classes, C)
            K = setup[0]
            qp = IterativeQP(*setup[1:])

            # Fix Gx <= h
            neg_cons = spzeros(bs.X_n, bs.L_n)
            for b, (l, u) in enumerate(slices(bs.neg_groups)):
                neg_cons[b, l:u] = 1.0
            pos_cons = speye(bs.X_p)
            bot_left = spzeros(bs.X_p, bs.L_n)
            top_right = spzeros(bs.X_n, bs.X_p)
            half_cons = sparse([[neg_cons, bot_left], [top_right, pos_cons]])
            qp.G = sparse([-speye(bs.X_p + bs.L_n), half_cons])
            qp.h = cvxmat(
                np.vstack([
                    np.zeros((bs.X_p + bs.L_n, 1)), C * np.ones(
                        (bs.X_p + bs.X_n, 1))
                ]))

            # Precompute kernel for all positive instances
            kernel = kernel_by_name(self.kernel, gamma=self.gamma, p=self.p)
            K_all = kernel(bs.instances, bs.instances)

            neg_selectors = np.array(range(bs.L_n))

            class MISVMCCCP(CCCP):
                def bailout(cself, svm, selectors, instances, K):
                    return svm

                def iterate(cself, svm, selectors, instances, K):
                    cself.mention('Training SVM...')
                    alphas, obj = qp.solve(cself.verbose)

                    # Construct SVM from solution
                    svm = SVM(kernel=self.kernel,
                              gamma=self.gamma,
                              p=self.p,
                              verbose=self.verbose,
                              sv_cutoff=self.sv_cutoff)
                    svm._X = instances
                    svm._y = classes
                    svm._alphas = alphas
                    svm._objective = obj
                    svm._compute_separator(K)
                    svm._K = K

                    cself.mention('Recomputing classes...')
                    p_confs = svm.predict(bs.pos_instances)
                    pos_selectors = bs.L_n + np.array([
                        l + np.argmax(p_confs[l:u])
                        for l, u in slices(bs.pos_groups)
                    ])
                    new_selectors = np.hstack([neg_selectors, pos_selectors])

                    if selectors is None:
                        sel_diff = len(new_selectors)
                    else:
                        sel_diff = np.nonzero(new_selectors -
                                              selectors)[0].size

                    cself.mention('Selector differences: %d' % sel_diff)
                    if sel_diff == 0:
                        return None, svm
                    elif sel_diff > 5:
                        # Clear results to avoid a
                        # bad starting point in
                        # the next iteration
                        qp.clear_results()

                    cself.mention('Updating QP...')
                    indices = (new_selectors, )
                    K = K_all[indices].T[indices].T
                    D = spdiag(classes)
                    qp.update_H(D * K * D)
                    return {
                        'svm': svm,
                        'selectors': new_selectors,
                        'instances': bs.instances[indices],
                        'K': K
                    }, None

            cccp = MISVMCCCP(verbose=self.verbose,
                             svm=None,
                             selectors=None,
                             instances=intial_instances,
                             K=K,
                             max_iters=self.max_iters)
            svm = cccp.solve()
            if svm is not None:
                obj = float(svm._objective)
                if obj < best_obj:
                    best_svm = svm
                    best_obj = obj

        if best_svm is not None:
            self._X = best_svm._X
            self._y = best_svm._y
            self._alphas = best_svm._alphas
            self._objective = best_svm._objective
            self._compute_separator(best_svm._K)
Пример #7
0
    def fit(self, bags, y):
        """
        @param bags : a sequence of n bags; each bag is an m-by-k array-like
                      object containing m instances with k features
        @param y : an array-like object of length n containing -1/+1 labels
        """
        self._bags = list(map(np.asmatrix, bags))
        bs = BagSplitter(self._bags, np.asmatrix(y).reshape((-1, 1)))
        self._X = np.vstack([
            bs.pos_instances, bs.pos_instances, bs.pos_instances,
            bs.neg_instances
        ])
        self._y = np.vstack([
            np.matrix(np.ones((bs.X_p + bs.L_p, 1))),
            -np.matrix(np.ones((bs.L_p + bs.L_n, 1)))
        ])
        if self.scale_C:
            C = self.C / float(len(self._bags))
        else:
            C = self.C

        # Setup SVM and adjust constraints
        _, _, f, A, b, lb, ub = self._setup_svm(self._y, self._y, C)
        ub[:bs.X_p] *= (float(bs.L_n) / float(bs.X_p))
        ub[bs.X_p:bs.X_p + 2 * bs.L_p] *= (float(bs.L_n) / float(bs.L_p))
        K = kernel_by_name(self.kernel, gamma=self.gamma, p=self.p)(self._X,
                                                                    self._X)
        D = spdiag(self._y)
        ub0 = np.matrix(ub)
        ub0[bs.X_p:bs.X_p + 2 * bs.L_p] *= 0.5

        def get_V(pos_classifications):
            eye_n = bs.L_n + 2 * bs.L_p
            top = np.zeros((bs.X_p, bs.L_p))
            for row, (i, j) in enumerate(slices(bs.pos_groups)):
                top[row, i:j] = _grad_softmin(-pos_classifications[i:j],
                                              self.alpha).flat
            return sp.bmat([[sp.coo_matrix(top), None],
                            [None, sp.eye(eye_n, eye_n)]])

        V0 = get_V(np.matrix(np.zeros((bs.L_p, 1))))

        qp = IterativeQP(D * V0 * K * V0.T * D, f, A, b, lb, ub0)

        best_obj = float('inf')
        best_svm = None
        for rr in range(self.restarts + 1):
            if rr == 0:
                if self.verbose:
                    print('Non-random start...')
                # Train on instances
                alphas, obj = qp.solve(self.verbose)
            else:
                if self.verbose:
                    print('Random restart %d of %d...' % (rr, self.restarts))
                alphas = np.matrix([uniform(0.0, 1.0)
                                    for i in range(len(lb))]).T
                obj = Objective(0.0, 0.0)
            svm = MICA(kernel=self.kernel,
                       gamma=self.gamma,
                       p=self.p,
                       verbose=self.verbose,
                       sv_cutoff=self.sv_cutoff)
            svm._X = self._X
            svm._y = self._y
            svm._V = V0
            svm._alphas = alphas
            svm._objective = obj
            svm._compute_separator(K)
            svm._K = K

            class missCCCP(CCCP):
                def bailout(cself, svm, obj_val):
                    return svm

                def iterate(cself, svm, obj_val):
                    cself.mention('Linearizing constraints...')
                    classifications = svm._predictions[bs.X_p:bs.X_p + bs.L_p]
                    V = get_V(classifications)

                    cself.mention('Computing slacks...')
                    # Difference is [1 - y_i*(w*phi(x_i) + b)]
                    pos_differences = 1.0 - classifications
                    neg_differences = 1.0 + classifications
                    # Slacks are positive differences only
                    pos_slacks = np.multiply(pos_differences > 0,
                                             pos_differences)
                    neg_slacks = np.multiply(neg_differences > 0,
                                             neg_differences)
                    all_slacks = np.hstack([pos_slacks, neg_slacks])

                    cself.mention('Linearizing...')
                    # Compute gradient across pairs
                    slack_grads = np.vstack([
                        _grad_softmin(pair, self.alpha) for pair in all_slacks
                    ])
                    # Stack results into one column
                    slack_grads = np.vstack([
                        np.ones((bs.X_p, 1)), slack_grads[:, 0],
                        slack_grads[:, 1],
                        np.ones((bs.L_n, 1))
                    ])
                    # Update QP
                    qp.update_H(D * V * K * V.T * D)
                    qp.update_ub(np.multiply(ub, slack_grads))

                    # Re-solve
                    cself.mention('Solving QP...')
                    alphas, obj = qp.solve(self.verbose)
                    new_svm = MICA(kernel=self.kernel,
                                   gamma=self.gamma,
                                   p=self.p,
                                   verbose=self.verbose,
                                   sv_cutoff=self.sv_cutoff)
                    new_svm._X = self._X
                    new_svm._y = self._y
                    new_svm._V = V
                    new_svm._alphas = alphas
                    new_svm._objective = obj
                    new_svm._compute_separator(K)
                    new_svm._K = K

                    if cself.check_tolerance(obj_val, obj):
                        return None, new_svm

                    return {'svm': new_svm, 'obj_val': obj}, None

            cccp = missCCCP(verbose=self.verbose,
                            svm=svm,
                            obj_val=None,
                            max_iters=self.max_iters)
            svm = cccp.solve()
            if svm is not None:
                obj = float(svm._objective)
                if obj < best_obj:
                    best_svm = svm
                    best_obj = obj

        if best_svm is not None:
            self._V = best_svm._V
            self._alphas = best_svm._alphas
            self._objective = best_svm._objective
            self._compute_separator(best_svm._K)
            self._bag_predictions = self.predict(self._bags)
Пример #8
0
    def fit(self, bags, y):
        """
        @param bags : a sequence of n bags; each bag is an m-by-k array-like
                      object containing m instances with k features
        @param y : an array-like object of length n containing -1/+1 labels
        """
        self._bags = map(np.asmatrix, bags)
        bs = BagSplitter(self._bags,
                         np.asmatrix(y).reshape((-1, 1)))
        self._X = np.vstack([bs.pos_instances,
                             bs.pos_instances,
                             bs.pos_instances,
                             bs.neg_instances])
        self._y = np.vstack([np.matrix(np.ones((bs.X_p + bs.L_p, 1))),
                             -np.matrix(np.ones((bs.L_p + bs.L_n, 1)))])
        if self.scale_C:
            C = self.C / float(len(self._bags))
        else:
            C = self.C

        # Setup SVM and adjust constraints
        _, _, f, A, b, lb, ub = self._setup_svm(self._y, self._y, C)
        ub[:bs.X_p] *= (float(bs.L_n) / float(bs.X_p))
        ub[bs.X_p: bs.X_p + 2 * bs.L_p] *= (float(bs.L_n) / float(bs.L_p))
        K = kernel_by_name(self.kernel, gamma=self.gamma, p=self.p)(self._X, self._X)
        D = spdiag(self._y)
        ub0 = np.matrix(ub)
        ub0[bs.X_p: bs.X_p + 2 * bs.L_p] *= 0.5

        def get_V(pos_classifications):
            eye_n = bs.L_n + 2 * bs.L_p
            top = np.zeros((bs.X_p, bs.L_p))
            for row, (i, j) in enumerate(slices(bs.pos_groups)):
                top[row, i:j] = _grad_softmin(-pos_classifications[i:j], self.alpha).flat
            return sp.bmat([[sp.coo_matrix(top), None],
                            [None, sp.eye(eye_n, eye_n)]])

        V0 = get_V(np.matrix(np.zeros((bs.L_p, 1))))

        qp = IterativeQP(D * V0 * K * V0.T * D, f, A, b, lb, ub0)

        best_obj = float('inf')
        best_svm = None
        for rr in range(self.restarts + 1):
            if rr == 0:
                if self.verbose:
                    print('Non-random start...')
                # Train on instances
                alphas, obj = qp.solve(self.verbose)
            else:
                if self.verbose:
                    print('Random restart %d of %d...' % (rr, self.restarts))
                alphas = np.matrix([uniform(0.0, 1.0) for i in range(len(lb))]).T
                obj = Objective(0.0, 0.0)
            svm = MICA(kernel=self.kernel, gamma=self.gamma, p=self.p,
                       verbose=self.verbose, sv_cutoff=self.sv_cutoff)
            svm._X = self._X
            svm._y = self._y
            svm._V = V0
            svm._alphas = alphas
            svm._objective = obj
            svm._compute_separator(K)
            svm._K = K

            class missCCCP(CCCP):

                def bailout(cself, svm, obj_val):
                    return svm

                def iterate(cself, svm, obj_val):
                    cself.mention('Linearizing constraints...')
                    classifications = svm._predictions[bs.X_p: bs.X_p + bs.L_p]
                    V = get_V(classifications)

                    cself.mention('Computing slacks...')
                    # Difference is [1 - y_i*(w*phi(x_i) + b)]
                    pos_differences = 1.0 - classifications
                    neg_differences = 1.0 + classifications
                    # Slacks are positive differences only
                    pos_slacks = np.multiply(pos_differences > 0, pos_differences)
                    neg_slacks = np.multiply(neg_differences > 0, neg_differences)
                    all_slacks = np.hstack([pos_slacks, neg_slacks])

                    cself.mention('Linearizing...')
                    # Compute gradient across pairs
                    slack_grads = np.vstack([_grad_softmin(pair, self.alpha)
                                             for pair in all_slacks])
                    # Stack results into one column
                    slack_grads = np.vstack([np.ones((bs.X_p, 1)),
                                             slack_grads[:, 0],
                                             slack_grads[:, 1],
                                             np.ones((bs.L_n, 1))])
                    # Update QP
                    qp.update_H(D * V * K * V.T * D)
                    qp.update_ub(np.multiply(ub, slack_grads))

                    # Re-solve
                    cself.mention('Solving QP...')
                    alphas, obj = qp.solve(self.verbose)
                    new_svm = MICA(kernel=self.kernel, gamma=self.gamma, p=self.p,
                                   verbose=self.verbose, sv_cutoff=self.sv_cutoff)
                    new_svm._X = self._X
                    new_svm._y = self._y
                    new_svm._V = V
                    new_svm._alphas = alphas
                    new_svm._objective = obj
                    new_svm._compute_separator(K)
                    new_svm._K = K

                    if cself.check_tolerance(obj_val, obj):
                        return None, new_svm

                    return {'svm': new_svm, 'obj_val': obj}, None

            cccp = missCCCP(verbose=self.verbose, svm=svm, obj_val=None,
                            max_iters=self.max_iters)
            svm = cccp.solve()
            if svm is not None:
                obj = float(svm._objective)
                if obj < best_obj:
                    best_svm = svm
                    best_obj = obj

        if best_svm is not None:
            self._V = best_svm._V
            self._alphas = best_svm._alphas
            self._objective = best_svm._objective
            self._compute_separator(best_svm._K)
            self._bag_predictions = self.predict(self._bags)
Пример #9
0
    def fit(self, bags, y):
        """
        @param bags : a sequence of n bags; each bag is an m-by-k array-like
                      object containing m instances with k features
        @param y : an array-like object of length n containing -1/+1 labels
        """
        self._bags = map(np.asmatrix, bags)
        bs = BagSplitter(self._bags,
                         np.asmatrix(y).reshape((-1, 1)))
        self._X = bs.instances
        Ln = bs.L_n
        Lp = bs.L_p
        Xp = bs.X_p
        m = Ln + Xp
        if self.scale_C:
            C = self.C / float(len(self._bags))
        else:
            C = self.C

        K = kernel_by_name(self.kernel, gamma=self.gamma, p=self.p)(self._X, self._X)
        new_classes = np.matrix(np.vstack([-np.ones((Ln, 1)),
                                           np.ones((Xp, 1))]))
        self._y = new_classes
        D = spdiag(new_classes)
        setup = list(self._setup_svm(new_classes, new_classes, C))[1:]
        setup[0] = np.matrix([0])
        qp = IterativeQP(*setup)

        c = cvxmat(np.hstack([np.zeros(Lp + 1),
                              np.ones(Xp + Ln)]))
        b = cvxmat(np.ones((Xp, 1)))
        A = spz(Xp, Lp + 1 + Xp + Ln)
        for row, (i, j) in enumerate(slices(bs.pos_groups)):
            A[row, i:j] = 1.0

        bottom_left = sparse(t([[-spI(Lp), spz(Lp)],
                                [spz(m, Lp), spz(m)]]))
        bottom_right = sparse([spz(Lp, m), -spI(m)])
        inst_cons = sparse(t([[spz(Xp, Lp), -spo(Xp)],
                              [spz(Ln, Lp), spo(Ln)]]))
        G = sparse(t([[inst_cons, -spI(m)],
                      [bottom_left, bottom_right]]))
        h = cvxmat(np.vstack([-np.ones((Xp, 1)),
                              np.zeros((Ln + Lp + m, 1))]))

        def to_V(upsilon):
            bot = np.zeros((Xp, Lp))
            for row, (i, j) in enumerate(slices(bs.pos_groups)):
                bot[row, i:j] = upsilon.flat[i:j]
            return sp.bmat([[sp.eye(Ln, Ln), None],
                            [None, sp.coo_matrix(bot)]])

        class MICACCCP(CCCP):

            def bailout(cself, alphas, upsilon, svm):
                return svm

            def iterate(cself, alphas, upsilon, svm):
                V = to_V(upsilon)
                cself.mention('Update QP...')
                qp.update_H(D * V * K * V.T * D)
                cself.mention('Solve QP...')
                alphas, obj = qp.solve(self.verbose)
                svm = MICA(kernel=self.kernel, gamma=self.gamma, p=self.p,
                           verbose=self.verbose, sv_cutoff=self.sv_cutoff)
                svm._X = self._X
                svm._y = self._y
                svm._V = V
                svm._alphas = alphas
                svm._objective = obj
                svm._compute_separator(K)
                svm._K = K

                cself.mention('Update LP...')
                for row, (i, j) in enumerate(slices(bs.pos_groups)):
                    G[row, i:j] = cvxmat(-svm._dotprods[Ln + i: Ln + j].T)
                h[Xp: Xp + Ln] = cvxmat(-(1 + svm._dotprods[:Ln]))

                cself.mention('Solve LP...')
                sol, _ = linprog(c, G, h, A, b, verbose=self.verbose)
                new_upsilon = sol[:Lp]

                if cself.check_tolerance(np.linalg.norm(upsilon - new_upsilon)):
                    return None, svm

                return {'alphas': alphas, 'upsilon': new_upsilon, 'svm': svm}, None

        best_obj = float('inf')
        best_svm = None
        for rr in range(self.restarts + 1):
            if rr == 0:
                if self.verbose:
                    print('Non-random start...')
                upsilon0 = np.matrix(np.vstack([np.ones((size, 1)) / float(size)
                                                for size in bs.pos_groups]))
            else:
                if self.verbose:
                    print('Random restart %d of %d...' % (rr, self.restarts))
                upsilon0 = np.matrix(np.vstack([rand_convex(size).T
                                                for size in bs.pos_groups]))
            cccp = MICACCCP(verbose=self.verbose, alphas=None, upsilon=upsilon0,
                            svm=None, max_iters=self.max_iters)
            svm = cccp.solve()
            if svm is not None:
                obj = float(svm._objective)
                if obj < best_obj:
                    best_svm = svm
                    best_obj = obj

        if best_svm is not None:
            self._V = best_svm._V
            self._alphas = best_svm._alphas
            self._objective = best_svm._objective
            self._compute_separator(best_svm._K)
            self._bag_predictions = self.predict(self._bags)