B_opt_country = get_B_policy(
        file_B_opt,
        country,
        'Uncontained',
    )
    Ng = B_opt_country.shape[0]
    assert len(
        age_groups
    ) == 9, 'Check the defined age-groups. Something is wrong there.'
    ref_obj = epid_sim(
        model_type=model_type,
        B=B_opt_country,
        Gamma=Gamma,
        Sigma=Sigma,
        dir_save_plots_main=dir_save_plots,
        country='Iran',
        policy_list=['Uncontained'],
        policy_switch_times=[0],
        x0=x0_vec,
        t_end=t_end,
        str_policy='Uncontained',
        group_labels=age_groups,
    )

    # %% current estimate
    t_s = 60
    list_t_switch = [0] + list(np.arange(t_s, t_s + 30 * 7, 30))
    str_ts = '_start_' + str(t_s) + 'D'
    all_containment_list = [
        'Uncontained',
        1.5,
        1.2,
        B_opt_country = get_B_policy(
            file_B_opt,
            country,
            'Uncontained',
        )
        Ng = B_opt_country.shape[0]
        assert len(
            age_groups
        ) == 9, 'Check the defined age-groups. Something is wrong there.'
        ref_obj = epid_sim(
            model_type=model_type,
            B=B_opt_country,
            Gamma=Gamma,
            Sigma=Sigma,
            dir_save_plots_main=dir_save_plots_main,
            country=country,
            policy_list=my_policy,
            policy_switch_times=[0],
            x0=x0_vec,
            t_end=t_end,
            str_policy=str_policy,
            group_labels=age_groups,
        )

        list_sol_I = []
        list_sol_R = []
        # pc1 = 45.
        pc2 = pc1 + 10
        x0R_array = list(np.arange(0., pc1, 5.0)/100) +\
                    list(np.arange(pc1, pc2, 1.0)/100)
        for x0R in x0R_array:
            print('x0R --------------> ', x0R)
Пример #3
0
            file_B_opt,
            country,
            'Uncontained',
        )
        Ng = B_opt_country.shape[0]
        assert len(
            age_groups
        ) == 9, 'Check the defined age-groups. Something is wrong there.'
        dir_save = Path(dir_save_plots, 'T_I_variable', str(T_I))
        epid_obj = epid_sim(
            model_type=model_type,
            B=B_opt_country,
            Gamma=Gamma,
            Sigma=Sigma,
            dir_save_plots_main=dir_save,
            country=country,
            policy_list=all_containment_list,
            policy_switch_times=list_t_switch,
            x0=x0_vec,
            t_end=t_end,
            str_policy=policy_name,
            group_labels=age_groups,
        )
        sol_agg_I = epid_obj.sol_agg_dict['I']
        sol_agg_R = epid_obj.sol_agg_dict['R']
        list_sol_I.append(sol_agg_I)
        list_sol_R.append(sol_agg_R)

    # dir_save_plots.mkdir(exist_ok=True, parents=True)
    filesave_I = Path(dir_save_plots,
                      model_type + '_' + country + '_I_AGG_ALL_T_I.png')
    filesave_R = Path(dir_save_plots,
Пример #4
0
    #
    Sigma = Gamma *10


    model_type = 'SIR'

    #%% reference policy: uncontained
    policy_name = 'Uncontained'
    list_t_switch = [0,]
    all_containment_list = ['Uncontained',]
    ref_obj = epid_sim(model_type=model_type,
                        B=B_opt_SIR,
                        Gamma=Gamma,
                        Sigma=Sigma,
                        dir_save_plots_main=dir_save_plots_main,
                        country='Germany',
                        policy_list=all_containment_list,
                        policy_switch_times=list_t_switch,
                        x0=x0_vec,
                        t_end=t_end,
                        str_policy=policy_name,
                        group_labels=age_groups,)
    ref_obj.plot_agg()
    ref_obj.plot_strat()
    ref_obj.plot_strat_multiax()
    print('*************************************************************')
    #%% Uncontained_then_switching_R0
    list_t_switch = [0, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, ]
    all_containment_list = ['Uncontained',
                            'R0_is_1',
                            'Uncontained',
                            'R0_is_1',
Пример #5
0
            print(country)
            B_opt_country = get_B_policy(file_B_opt, country, 'Uncontained', )
            Gamma = load_mat(file_B_opt, 'Gamma')
            Ng = B_opt_country.shape[0]
            assert len(age_groups) == 9, 'Check the defined age-groups. Something is wrong there.'
            if model_type == 'SEIR':
                Sigma = load_mat(file_B_opt, 'Sigma')
            else:
                Sigma = np.zeros((Ng, Ng))

            epid_obj = epid_sim(model_type=model_type,
                                B=B_opt_country,
                                Gamma=Gamma,
                                Sigma=Sigma,
                                dir_save_plots_main=dir_save_plots,
                                country=country,
                                policy_list=all_policies,
                                policy_switch_times=list_t_switch,
                                x0=x0_vec,
                                t_end=t_end,
                                str_policy='00_OVERALL',
                                group_labels=age_groups,)
            sol_agg_I = epid_obj.sol_agg_dict['I']
            sol_agg_R = epid_obj.sol_agg_dict['R']
            list_sol_I.append(sol_agg_I)
            list_sol_R.append(sol_agg_R)

        # dir_save_plots.mkdir(exist_ok=True, parents=True)
        filesave_I = Path(dir_save_plots, model_type + '_I_AGG_ALL_countries.png')
        filesave_R = Path(dir_save_plots, model_type + '_R_AGG_ALL_countries.png')

        # plot aggregate plots to compare all policies.