Пример #1
0
def test_three_qubit_local_depolarizing_representation_error():
    q0, q1, q2 = LineQubit.range(3)
    with pytest.raises(ValueError):
        represent_operation_with_local_depolarizing_noise(
            Circuit(CCNOT(q0, q1, q2)),
            0.05,
        )
Пример #2
0
def test_sample_sequence_choi(gate: cirq.Gate):
    """Tests the sample_sequence by comparing the exact Choi matrices."""
    qreg = cirq.LineQubit.range(gate.num_qubits())
    ideal_op = gate.on(*qreg)
    ideal_circ = cirq.Circuit(ideal_op)
    noisy_op_tree = [ideal_op] + [cirq.depolarize(BASE_NOISE)(q) for q in qreg]

    ideal_choi = _operation_to_choi(ideal_op)
    noisy_choi = _operation_to_choi(noisy_op_tree)

    representation = represent_operation_with_local_depolarizing_noise(
        ideal_circ,
        BASE_NOISE,
    )

    choi_unbiased_estimates = []
    rng = np.random.RandomState(1)
    for _ in range(500):
        imp_seqs, signs, norm = sample_sequence(ideal_circ, [representation],
                                                random_state=rng)
        noisy_sequence = imp_seqs[0].with_noise(cirq.depolarize(BASE_NOISE))
        sequence_choi = _circuit_to_choi(noisy_sequence)
        choi_unbiased_estimates.append(norm * signs[0] * sequence_choi)

    choi_pec_estimate = np.average(choi_unbiased_estimates, axis=0)
    noise_error = np.linalg.norm(ideal_choi - noisy_choi)
    pec_error = np.linalg.norm(ideal_choi - choi_pec_estimate)

    assert pec_error < noise_error
    assert np.allclose(ideal_choi, choi_pec_estimate, atol=0.05)
Пример #3
0
def test_find_optimal_representation_depolarizing_two_qubit_gates(circ_type):
    """Test optimal representation agrees with a known analytic result."""
    for ideal_gate, noise_level in product([CNOT, CZ], [0.1, 0.5]):
        q = LineQubit.range(2)
        ideal_op = Circuit(ideal_gate(*q))
        implementable_circuits = [Circuit(ideal_op)]
        # Append two-qubit-gate with Paulis on one qubit
        for gate in [X, Y, Z]:
            implementable_circuits.append(Circuit([ideal_op, gate(q[0])]))
            implementable_circuits.append(Circuit([ideal_op, gate(q[1])]))
        # Append two-qubit gate with Paulis on both qubits
        for gate_a, gate_b in product([X, Y, Z], repeat=2):
            implementable_circuits.append(
                Circuit([ideal_op, gate_a(q[0]), gate_b(q[1])])
            )
        noisy_circuits = [
            circ + Circuit(DepolarizingChannel(noise_level).on_each(*q))
            for circ in implementable_circuits
        ]
        super_operators = [
            choi_to_super(_circuit_to_choi(circ)) for circ in noisy_circuits
        ]

        # Define circuits with native types
        implementable_native = [
            convert_from_mitiq(c, circ_type) for c in implementable_circuits
        ]
        ideal_op_native = convert_from_mitiq(ideal_op, circ_type)

        noisy_operations = [
            NoisyOperation(ideal, real)
            for ideal, real in zip(implementable_native, super_operators)
        ]

        # Find optimal representation
        noisy_basis = NoisyBasis(*noisy_operations)
        rep = find_optimal_representation(
            ideal_op_native, noisy_basis, tol=1.0e-8
        )
        # Expected analytical result
        expected_rep = represent_operation_with_local_depolarizing_noise(
            ideal_op_native,
            noise_level,
        )
        assert np.allclose(np.sort(rep.coeffs), np.sort(expected_rep.coeffs))
        assert rep == expected_rep
Пример #4
0
def test_local_depolarizing_representation_with_choi(gate: Gate, noise: float):
    """Tests the representation by comparing exact Choi matrices."""
    qreg = LineQubit.range(gate.num_qubits())
    ideal_choi = _operation_to_choi(gate.on(*qreg))
    op_rep = represent_operation_with_local_depolarizing_noise(
        Circuit(gate.on(*qreg)), noise,
    )
    choi_components = []
    for noisy_op, coeff in op_rep.basis_expansion.items():
        implementable_circ = noisy_op.circuit()
        # The representation assume local noise on each qubit.
        depolarizing_op = DepolarizingChannel(noise).on_each(*qreg)
        # Apply noise after each sequence.
        # NOTE: noise is not applied after each operation.
        implementable_circ.append(depolarizing_op)
        sequence_choi = _circuit_to_choi(implementable_circ)
        choi_components.append(coeff * sequence_choi)
    combination_choi = np.sum(choi_components, axis=0)
    assert np.allclose(ideal_choi, combination_choi, atol=10 ** -6)
Пример #5
0
def test_find_optimal_representation_single_qubit_depolarizing(circ_type):
    """Test optimal representation agrees with a known analytic result."""
    for ideal_gate, noise_level in product([X, Y, H], [0.1, 0.3]):
        q = LineQubit(0)

        ideal_op = Circuit(ideal_gate(q))
        implementable_circuits = [Circuit(ideal_op)]
        # Add ideal gate followed by Paulis
        for gate in [X, Y, Z]:
            implementable_circuits.append(Circuit([ideal_op, gate(q)]))

        noisy_circuits = [
            circ + Circuit(DepolarizingChannel(noise_level).on_each(q))
            for circ in implementable_circuits
        ]
        super_operators = [
            choi_to_super(_circuit_to_choi(circ)) for circ in noisy_circuits
        ]

        # Define circuits with native types
        implementable_native = [
            convert_from_mitiq(c, circ_type) for c in implementable_circuits
        ]
        ideal_op_native = convert_from_mitiq(ideal_op, circ_type)

        noisy_operations = [
            NoisyOperation(ideal, real)
            for ideal, real in zip(implementable_native, super_operators)
        ]
        # Find optimal representation
        noisy_basis = NoisyBasis(*noisy_operations)
        rep = find_optimal_representation(
            ideal_op_native, noisy_basis, tol=1.0e-8
        )
        # Expected analytical result
        expected_rep = represent_operation_with_local_depolarizing_noise(
            ideal_op_native,
            noise_level,
        )
        assert np.allclose(np.sort(rep.coeffs), np.sort(expected_rep.coeffs))
        assert rep == expected_rep
Пример #6
0
def test_sample_circuit_choi():
    """Tests the sample_circuit by comparing the exact Choi matrices."""
    # A simple 2-qubit circuit
    qreg = cirq.LineQubit.range(2)
    ideal_circ = cirq.Circuit(
        cirq.X.on(qreg[0]),
        cirq.I.on(qreg[1]),
        cirq.CNOT.on(*qreg),
    )

    noisy_circuit = ideal_circ.with_noise(cirq.depolarize(BASE_NOISE))

    ideal_choi = _circuit_to_choi(ideal_circ)
    noisy_choi = _operation_to_choi(noisy_circuit)

    rep_list = []
    for op in ideal_circ.all_operations():
        rep_list.append(
            represent_operation_with_local_depolarizing_noise(
                cirq.Circuit(op),
                BASE_NOISE,
            ))

    choi_unbiased_estimates = []
    rng = np.random.RandomState(1)
    for _ in range(500):
        imp_circ, sign, norm = sample_circuit(ideal_circ,
                                              rep_list,
                                              random_state=rng)
        noisy_imp_circ = imp_circ.with_noise(cirq.depolarize(BASE_NOISE))
        sequence_choi = _circuit_to_choi(noisy_imp_circ)
        choi_unbiased_estimates.append(norm * sign * sequence_choi)

    choi_pec_estimate = np.average(choi_unbiased_estimates, axis=0)
    noise_error = np.linalg.norm(ideal_choi - noisy_choi)
    pec_error = np.linalg.norm(ideal_choi - choi_pec_estimate)

    assert pec_error < noise_error
    assert np.allclose(ideal_choi, choi_pec_estimate, atol=0.05)
Пример #7
0
def get_pauli_representations(
    base_noise: float,
    qubits: Optional[List[cirq.Qid]] = None,
) -> List[OperationRepresentation]:

    if qubits is None:
        qreg = cirq.LineQubit.range(2)
    else:
        qreg = qubits

    # Generate all ideal single-qubit Pauli operations for both qubits
    pauli_gates = [cirq.X, cirq.Y, cirq.Z]
    ideal_operations = []

    for gate in pauli_gates:
        for qubit in qreg:
            ideal_operations.append(cirq.Circuit(gate(qubit)))

    # Generate all ideal 2-qubit Pauli operations
    for gate_a, gate_b in product(pauli_gates, repeat=2):
        ideal_operations.append(
            cirq.Circuit([gate_a(qreg[0]), gate_b(qreg[1])]))

    # Add CNOT too
    ideal_operations.append(cirq.Circuit(cirq.CNOT(*qreg)))

    # Generate all representations
    reps = []
    for op in ideal_operations:
        reps.append(
            represent_operation_with_local_depolarizing_noise(
                op,
                base_noise,
            ))

    return reps