Пример #1
0
def test_circuit_to_choi():
    """Tests _circuit_to_choi is consistent with _operation_to_choi."""
    base_noise = 0.01
    q = LineQubit(0)
    noisy_operation = depolarize(base_noise).on(q)
    assert np.allclose(
        _operation_to_choi(noisy_operation),
        _circuit_to_choi(Circuit(noisy_operation)),
    )
    noisy_sequence = [noisy_operation, noisy_operation]
    assert np.allclose(
        _operation_to_choi(noisy_sequence),
        _circuit_to_choi(Circuit(noisy_sequence)),
    )
Пример #2
0
def test_sample_sequence_choi(gate: cirq.Gate):
    """Tests the sample_sequence by comparing the exact Choi matrices."""
    qreg = cirq.LineQubit.range(gate.num_qubits())
    ideal_op = gate.on(*qreg)
    ideal_circ = cirq.Circuit(ideal_op)
    noisy_op_tree = ([ideal_op] +
                     [cirq.depolarize(BASE_NOISE)(q) for q in qreg])

    ideal_choi = _operation_to_choi(ideal_op)
    noisy_choi = _operation_to_choi(noisy_op_tree)

    representation = represent_operation_with_local_depolarizing_noise(
        ideal_circ,
        BASE_NOISE,
    )

    choi_unbiased_estimates = []
    rng = np.random.RandomState(1)
    for _ in range(500):
        imp_seq, sign, norm = sample_sequence(ideal_circ, [representation],
                                              random_state=rng)
        noisy_sequence = imp_seq.with_noise(cirq.depolarize(BASE_NOISE))
        sequence_choi = _circuit_to_choi(noisy_sequence)
        choi_unbiased_estimates.append(norm * sign * sequence_choi)

    choi_pec_estimate = np.average(choi_unbiased_estimates, axis=0)
    noise_error = np.linalg.norm(ideal_choi - noisy_choi)
    pec_error = np.linalg.norm(ideal_choi - choi_pec_estimate)

    assert pec_error < noise_error
    assert np.allclose(ideal_choi, choi_pec_estimate, atol=0.05)
Пример #3
0
def test_sample_circuit_choi(decomposition_dict: DecompositionDict):
    """Tests the sample_circuit by comparing the exact Choi matrices."""
    ideal_choi = _circuit_to_choi(twoq_circ)
    noisy_circuit = twoq_circ.with_noise(depolarize(BASE_NOISE))
    noisy_choi = _circuit_to_choi(noisy_circuit)
    choi_unbiased_estimates = []
    for _ in range(500):
        imp_circuit, sign, norm = sample_circuit(twoq_circ, decomposition_dict)
        noisy_imp_circuit = imp_circuit.with_noise(depolarize(BASE_NOISE))
        imp_circuit_choi = _circuit_to_choi(noisy_imp_circuit)
        choi_unbiased_estimates.append(norm * sign * imp_circuit_choi)
    choi_pec_estimate = np.average(choi_unbiased_estimates, axis=0)

    noise_error = np.linalg.norm(ideal_choi - noisy_choi)
    pec_error = np.linalg.norm(ideal_choi - choi_pec_estimate)
    assert pec_error < noise_error
    assert np.allclose(ideal_choi, choi_pec_estimate, atol=0.05)
Пример #4
0
def test_sample_circuit_choi():
    """Tests the sample_circuit by comparing the exact Choi matrices."""
    # A simple 2-qubit circuit
    qreg = cirq.LineQubit.range(2)
    ideal_circ = cirq.Circuit(
        cirq.X.on(qreg[0]),
        cirq.I.on(qreg[1]),
        cirq.CNOT.on(*qreg),
    )

    noisy_circuit = ideal_circ.with_noise(cirq.depolarize(BASE_NOISE))

    ideal_choi = _circuit_to_choi(ideal_circ)
    noisy_choi = _operation_to_choi(noisy_circuit)

    rep_list = []
    for op in ideal_circ.all_operations():
        rep_list.append(
            represent_operation_with_local_depolarizing_noise(
                cirq.Circuit(op),
                BASE_NOISE,
            ))

    choi_unbiased_estimates = []
    rng = np.random.RandomState(1)
    for _ in range(500):
        imp_circ, sign, norm = sample_circuit(ideal_circ,
                                              rep_list,
                                              random_state=rng)
        noisy_imp_circ = imp_circ.with_noise(cirq.depolarize(BASE_NOISE))
        sequence_choi = _circuit_to_choi(noisy_imp_circ)
        choi_unbiased_estimates.append(norm * sign * sequence_choi)

    choi_pec_estimate = np.average(choi_unbiased_estimates, axis=0)
    noise_error = np.linalg.norm(ideal_choi - noisy_choi)
    pec_error = np.linalg.norm(ideal_choi - choi_pec_estimate)

    assert pec_error < noise_error
    assert np.allclose(ideal_choi, choi_pec_estimate, atol=0.05)
Пример #5
0
def test_depolarizing_representation_with_choi(gate: Gate, noise: float):
    """Tests the representation by comparing exact Choi matrices."""
    qreg = LineQubit.range(gate.num_qubits())
    ideal_choi = _operation_to_choi(gate.on(*qreg))
    op_rep = represent_operation_with_global_depolarizing_noise(
        Circuit(gate.on(*qreg)),
        noise,
    )
    choi_components = []
    for noisy_op, coeff in op_rep.basis_expansion.items():
        implementable_circ = noisy_op.ideal_circuit()
        # Apply noise after each sequence.
        # NOTE: noise is not applied after each operation.
        depolarizing_op = DepolarizingChannel(noise, len(qreg))(*qreg)
        implementable_circ.append(depolarizing_op)
        sequence_choi = _circuit_to_choi(implementable_circ)
        choi_components.append(coeff * sequence_choi)
    combination_choi = np.sum(choi_components, axis=0)
    assert np.allclose(ideal_choi, combination_choi, atol=10**-6)