def generate_reference_data_for_pcquick_filter_tests():

    orig_long = np.arange(0., 359.9, 2.5)

    test_olr = olr.load_noaa_interpolated_olr(olr_data_filename)

    lat = np.array([0])
    test_olr_part = olr.interpolate_spatial_grid(test_olr, lat, orig_long)
    olrdata_filtered = qfilter.filter_olr_for_mjo_pc_calculation_1d_spectral_smoothing(
        test_olr_part)
    filename = Path(
        str(reference_file_filterOLRForMJO_PCQuick_Calculation_lat0) +
        ".newcalc")
    olrdata_filtered.save_to_npzfile(filename)

    lat = np.array([5])
    test_olr_part = olr.interpolate_spatial_grid(test_olr, lat, orig_long)
    olrdata_filtered = qfilter.filter_olr_for_mjo_pc_calculation_1d_spectral_smoothing(
        test_olr_part)
    filename = Path(
        str(reference_file_filterOLRForMJO_PCQuick_Calculation_lat5) +
        ".newcalc")
    olrdata_filtered.save_to_npzfile(filename)

    lat = np.array([-10])
    test_olr_part = olr.interpolate_spatial_grid(test_olr, lat, orig_long)
    olrdata_filtered = qfilter.filter_olr_for_mjo_pc_calculation_1d_spectral_smoothing(
        test_olr_part)
    filename = Path(
        str(reference_file_filterOLRForMJO_PCQuick_Calculation_latmin10) +
        ".newcalc")
    olrdata_filtered.save_to_npzfile(filename)
def test_mjoindices_reference_validation_filterOLRForMJO_PC_Calculation():

    errors = []

    orig_long = np.arange(0., 359.9, 2.5)

    test_olr = olr.load_noaa_interpolated_olr(olr_data_filename)

    lat = np.array([0])
    test_olr_part = olr.interpolate_spatial_grid(test_olr, lat, orig_long)
    target = wkfilter.filter_olr_for_mjo_pc_calculation(test_olr_part)
    control = olr.restore_from_npzfile(reference_file_filterOLRForMJO_PC_Calculation_lat0)
    if not target.close(control):
        errors.append("Filtered OLR for latitude 0 not identical")

    lat = np.array([5])
    test_olr_part = olr.interpolate_spatial_grid(test_olr, lat, orig_long)
    target = wkfilter.filter_olr_for_mjo_pc_calculation(test_olr_part)
    control = olr.restore_from_npzfile(reference_file_filterOLRForMJO_PC_Calculation_lat5)
    if not target.close(control):
        errors.append("Filtered OLR for latitude 5 not identical")

    lat = np.array([-10])
    test_olr_part = olr.interpolate_spatial_grid(test_olr, lat, orig_long)
    target = wkfilter.filter_olr_for_mjo_pc_calculation(test_olr_part)
    control = olr.restore_from_npzfile(reference_file_filterOLRForMJO_PC_Calculation_latmin10)
    if not target.close(control):
        errors.append("Filtered OLR for latitude -10 not identical")

    assert not errors, "errors occurred:\n{}".format("\n".join(errors))
Пример #3
0
def test_completeOMIReproduction_coarsegrid(tmp_path):

    errors = []

    # Calculate EOFs
    raw_olr = olr.load_noaa_interpolated_olr(olr_data_filename)
    shorter_olr = olr.restrict_time_coverage(raw_olr,
                                             np.datetime64('1979-01-01'),
                                             np.datetime64('2012-12-31'))
    coarse_lat = np.arange(-20., 20.1, 8.0)
    coarse_long = np.arange(0., 359.9, 20.0)
    interpolated_olr = olr.interpolate_spatial_grid(shorter_olr, coarse_lat,
                                                    coarse_long)
    eofs = omi.calc_eofs_from_olr(interpolated_olr,
                                  sign_doy1reference=True,
                                  interpolate_eofs=True,
                                  strict_leap_year_treatment=True)
    eofs.save_all_eofs_to_npzfile(
        tmp_path / "test_completeOMIReproduction_coarsegrid_EOFs.npz")

    # Validate EOFs against mjoindices own reference (results should be equal)
    mjoindices_reference_eofs = eof.restore_all_eofs_from_npzfile(
        mjoindices_reference_eofs_filename_coarsegrid)
    for idx, target_eof in enumerate(eofs.eof_list):
        if not mjoindices_reference_eofs.eof_list[idx].close(target_eof):
            errors.append(
                "mjoindices-reference-validation: EOF data at index %i is incorrect"
                % idx)

    # Calculate PCs
    raw_olr = olr.load_noaa_interpolated_olr(olr_data_filename)
    pcs = omi.calculate_pcs_from_olr(raw_olr,
                                     eofs,
                                     np.datetime64("1979-01-01"),
                                     np.datetime64("2018-08-28"),
                                     use_quick_temporal_filter=False)
    pc_temp_file = tmp_path / "test_completeOMIReproduction_coarsegrid_PCs.txt"
    pcs.save_pcs_to_txt_file(pc_temp_file)

    # Validate PCs against mjoindices own reference (results should be equal)
    # Reload pcs instead of using the calculated ones, because the saving routine has truncated some decimals of the
    # reference values. So do the same with the testing target pcs.
    pcs = pc.load_pcs_from_txt_file(pc_temp_file)
    mjoindices_reference_pcs = pc.load_pcs_from_txt_file(
        mjoindices_reference_pcs_filename_coarsegrid)
    if not np.all(mjoindices_reference_pcs.time == pcs.time):
        errors.append(
            "mjoindices-reference-validation: Dates of PCs do not match.")
    if not np.allclose(mjoindices_reference_pcs.pc1, pcs.pc1):
        errors.append(
            "mjoindices-reference-validation: PC1 values do not match.")
    if not np.allclose(mjoindices_reference_pcs.pc2, pcs.pc2):
        errors.append(
            "mjoindices-reference-validation: PC2 values do not match.")

    assert not errors, "errors occurred:\n{}".format("\n".join(errors))
Пример #4
0
def calculate_pcs_from_olr(olrdata: olr.OLRData,
                           eofdata: eof.EOFDataForAllDOYs,
                           period_start: np.datetime64,
                           period_end: np.datetime64,
                           use_quick_temporal_filter=False) -> pc.PCData:
    """
    This major function computes PCs according to the OMI algorithm based on given OLR data and previously calculated
    EOFs.

    :param olrdata: The OLR dataset. The spatial grid must fit to that of the EOFs
    :param eofdata: The previously calculated DOY-dependent EOFs.
    :param period_start: the beginning of the period, for which the PCs should be calculated.
    :param period_end: the ending of the period, for which the PCs should be calculated.
    :param use_quick_temporal_filter: There are two implementations of the temporal filtering: First, the original
        Wheeler-Kiladis-Filter, which is closer to the original implementation while being slower (because it is based
        on a 2-dim FFT) or a 1-dim FFT Filter. Setting this parameter to True uses the quicker 1-dim implementation. The
        results are quite similar.

    :return: The PC time series.
    """
    resticted_olr_data = olr.restrict_time_coverage(olrdata, period_start,
                                                    period_end)
    resampled_olr_data = olr.interpolate_spatial_grid(resticted_olr_data,
                                                      eofdata.lat,
                                                      eofdata.long)
    if use_quick_temporal_filter:
        filtered_olr_data = qfilter.filter_olr_for_mjo_pc_calculation_1d_spectral_smoothing(
            resampled_olr_data)
    else:
        filtered_olr_data = wkfilter.filter_olr_for_mjo_pc_calculation(
            resampled_olr_data)
    raw_pcs = regress_3dim_data_onto_eofs(filtered_olr_data, eofdata)
    normalization_factor = 1 / np.std(raw_pcs.pc1)
    pc1 = np.multiply(raw_pcs.pc1, normalization_factor)
    pc2 = np.multiply(raw_pcs.pc2, normalization_factor)
    return pc.PCData(raw_pcs.time, pc1, pc2)
Пример #5
0
    '')) / "example_data" / "omi_recalc_example_plots_coarsegrid"

# ############## Calculation of the EOFs ###################

if not fig_dir.exists():
    fig_dir.mkdir(parents=True, exist_ok=False)

# Load the OLR data.
# This is the first place to insert your own OLR data, if you want to compute OMI for a different dataset.
raw_olr = olr.load_noaa_interpolated_olr(olr_data_filename)
# Restrict dataset to the original length for the EOF calculation (Kiladis, 2014).
shorter_olr = olr.restrict_time_coverage(raw_olr, np.datetime64('1979-01-01'),
                                         np.datetime64('2012-12-31'))

# This is the line, where the spatial grid is changed.
interpolated_olr = olr.interpolate_spatial_grid(shorter_olr, coarse_lat,
                                                coarse_long)

# Diagnosis plot of the loaded OLR data.
fig = olr.plot_olr_map_for_date(interpolated_olr, np.datetime64("2010-01-01"))
fig.show()
fig.savefig(fig_dir / "OLR_map.png")

# Calculate the eofs. In the postprocessing, the signs of the EOFs are adjusted and the EOF in a period
# around DOY 300 are replaced by an interpolation see Kiladis, 2014).
# The switch strict_leap_year_treatment has major implications only for the EOFs calculated for DOY 366 and causes only
# minor differences for the other DOYs. While the results for setting strict_leap_year_treatment=False are closer to the
# original values, the calculation strict_leap_year_treatment=True is somewhat more stringently implemented using
# built-in datetime functionality.
# See documentation of mjoindices.tools.find_doy_ranges_in_dates() for details.
eofs = omi.calc_eofs_from_olr(interpolated_olr,
                              sign_doy1reference=True,