def __init__( self, expe, frontend, assortativity=False, alpha_hyper_parameter=None, sigma_w_hyper_parameter=None, metropolis_hastings_k_new=True, ): self._sigma_w_hyper_parameter = sigma_w_hyper_parameter self.bilinear_matrix = None self.log_likelihood = None self.assortativity = assortativity self._overflow = 1.0 self.ratio_MH_F = 0.0 self.ratio_MH_W = 0.0 self.snapshot_freq = 20 self.burnin = expe.get('burnin', 5) # (inverse burnin, last sample to keep self.thinning = expe.get('thinning', 1) self._csv_typo = '_iteration time_it _entropy _entropy_t _K _alpha _sigma_w Z_sum ratio_MH_F ratio_MH_W' #self._fmt = '%d %.4f %.8f %.8f %d %.8f %.8f %d %.4f %.4f' IBP.__init__(self, alpha_hyper_parameter, metropolis_hastings_k_new) GibbsSampler.__init__(self, expe, frontend)
def __init__(self, expe, frontend): self.comm = dict( ) # Empty dict to store communities and blockmodel structure self._measures = [ '_iteration', 'time_it', '_entropy', '_entropy_t', '_K', '_alpha', '_gmma', 'alpha_mean', 'delta_mean', 'alpha_var', 'delta_var' ] #self._fmt = '%d %.4f %.8f %.8f %d %.8f %.8f %.4f %.4f %.4f %.4f' GibbsSampler.__init__(self, expe, frontend)
def __init__(self, sampler, data_t=None, **kwargs): self.burnin = kwargs.get('burnin', 0.05) # Ratio of iteration self.thinning = kwargs.get('thinning', 1) self.comm = dict() # Empty dict to store communities and blockmodel structure self.data_t = data_t self._csv_typo = 'it it_time entropy_train entropy_test K alpha gamma alpha_mean delta_mean alpha_var delta_var' self.fmt = '%d %.4f %.8f %.8f %d %.8f %.8f %.4f %.4f %.4f %.4f' #self.fmt = '%s %s %s %s %s %s %s %s %s %s %s' GibbsSampler.__init__(self, sampler, **kwargs)
def __init__(self, sampler, data_t=None, **kwargs): self.burnin = kwargs.get('burnin', 0.05) # Ratio of iteration self.thinning = kwargs.get('thinning', 1) self.comm = dict( ) # Empty dict to store communities and blockmodel structure self.data_t = data_t self._measures = [ 'it', 'it_time', 'entropy_train', 'entropy_test', 'K', 'alpha', 'gamma', 'alpha_mean', 'delta_mean', 'alpha_var', 'delta_var' ] self.fmt = '%d %.4f %.8f %.8f %d %.8f %.8f %.4f %.4f %.4f %.4f' #self.fmt = '%s %s %s %s %s %s %s %s %s %s %s' GibbsSampler.__init__(self, sampler, **kwargs)
def __init__(self, expe, frontend): self.comm = dict( ) # Empty dict to store communities and blockmodel structure self._csv_typo = '_iteration time_it _entropy _entropy_t _K _alpha _gmma alpha_mean delta_mean alpha_var delta_var' #self._fmt = '%d %.4f %.8f %.8f %d %.8f %.8f %.4f %.4f %.4f %.4f' GibbsSampler.__init__(self, expe, frontend)