def test_minibatches_per_step(self):
        _epochs = self.epochs
        self.epochs = 2
        rl_parameters = RLParameters(gamma=0.95,
                                     target_update_rate=0.9,
                                     maxq_learning=True)
        rainbow_parameters = RainbowDQNParameters(double_q_learning=True,
                                                  dueling_architecture=False)
        training_parameters1 = TrainingParameters(
            layers=self.layers,
            activations=self.activations,
            minibatch_size=1024,
            minibatches_per_step=1,
            learning_rate=0.25,
            optimizer="ADAM",
        )
        training_parameters2 = TrainingParameters(
            layers=self.layers,
            activations=self.activations,
            minibatch_size=128,
            minibatches_per_step=8,
            learning_rate=0.25,
            optimizer="ADAM",
        )
        env1 = Env(self.state_dims, self.action_dims)
        env2 = Env(self.state_dims, self.action_dims)
        model_parameters1 = DiscreteActionModelParameters(
            actions=env1.actions,
            rl=rl_parameters,
            rainbow=rainbow_parameters,
            training=training_parameters1,
        )
        model_parameters2 = DiscreteActionModelParameters(
            actions=env2.actions,
            rl=rl_parameters,
            rainbow=rainbow_parameters,
            training=training_parameters2,
        )
        # minibatch_size / 8, minibatches_per_step * 8 should give the same result
        logger.info("Training model 1")
        trainer1 = self._train(model_parameters1, env1)
        SummaryWriterContext._reset_globals()
        logger.info("Training model 2")
        trainer2 = self._train(model_parameters2, env2)

        weight1 = trainer1.q_network.fc.layers[-1].weight.detach().numpy()
        weight2 = trainer2.q_network.fc.layers[-1].weight.detach().numpy()

        # Due to numerical stability this tolerance has to be fairly high
        self.assertTrue(np.allclose(weight1, weight2, rtol=0.0, atol=1e-3))
        self.epochs = _epochs
Пример #2
0
 def get_sarsa_parameters(self, environment, reward_shape, dueling,
                          categorical, quantile, clip_grad_norm):
     rl_parameters = RLParameters(
         gamma=DISCOUNT,
         target_update_rate=1.0,
         maxq_learning=False,
         reward_boost=reward_shape,
     )
     training_parameters = TrainingParameters(
         layers=[-1, 128, -1] if dueling else [-1, -1],
         activations=["relu", "relu"] if dueling else ["linear"],
         minibatch_size=self.minibatch_size,
         learning_rate=0.05,
         optimizer="ADAM",
         clip_grad_norm=clip_grad_norm,
     )
     return DiscreteActionModelParameters(
         actions=environment.ACTIONS,
         rl=rl_parameters,
         training=training_parameters,
         rainbow=RainbowDQNParameters(
             double_q_learning=True,
             dueling_architecture=dueling,
             categorical=categorical,
             quantile=quantile,
             num_atoms=5,
         ),
     )
Пример #3
0
 def get_sarsa_parameters(self):
     return ContinuousActionModelParameters(
         rl=RLParameters(gamma=DISCOUNT,
                         target_update_rate=1.0,
                         maxq_learning=False),
         training=TrainingParameters(
             layers=[-1, 256, 128, -1],
             activations=["relu", "relu", "linear"],
             minibatch_size=self.minibatch_size,
             learning_rate=0.05,
             optimizer="ADAM",
         ),
         rainbow=RainbowDQNParameters(double_q_learning=True,
                                      dueling_architecture=False),
     )
    def test_trainer_maxq(self):
        env = Env(self.state_dims, self.action_dims)
        maxq_parameters = DiscreteActionModelParameters(
            actions=env.actions,
            rl=RLParameters(gamma=0.95,
                            target_update_rate=0.9,
                            maxq_learning=True),
            rainbow=RainbowDQNParameters(double_q_learning=True,
                                         dueling_architecture=False),
            training=TrainingParameters(
                layers=self.layers,
                activations=self.activations,
                minibatch_size=1024,
                learning_rate=0.25,
                optimizer="ADAM",
            ),
        )

        # Q value should converge to very close to 20
        trainer = self._train(maxq_parameters, env)
        avg_q_value_after_training = torch.mean(trainer.all_action_scores)
        self.assertLess(avg_q_value_after_training, 22)
        self.assertGreater(avg_q_value_after_training, 18)