Пример #1
0
    def test_normalize_dense_matrix_enum(self):
        normalization_parameters = {
            1: NormalizationParameters(
                identify_types.ENUM,
                None,
                None,
                None,
                None,
                [12, 4, 2],
                None,
                None,
                None,
            ),
            2: NormalizationParameters(
                identify_types.CONTINUOUS, None, 0, 0, 1, None, None, None, None
            ),
            3: NormalizationParameters(
                identify_types.ENUM, None, None, None, None, [15, 3], None, None, None
            ),
        }
        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()

        inputs = np.zeros([4, 3], dtype=np.float32)
        feature_ids = [2, 1, 3]  # Sorted according to feature type
        inputs[:, feature_ids.index(1)] = [12, 4, 2, 2]
        inputs[:, feature_ids.index(2)] = [1.0, 2.0, 3.0, 3.0]
        inputs[:, feature_ids.index(3)] = [15, 3, 15, normalization.MISSING_VALUE]
        input_blob = C2.NextBlob("input_blob")
        workspace.FeedBlob(input_blob, np.array([0], dtype=np.float32))
        normalized_output_blob, _ = preprocessor.normalize_dense_matrix(
            input_blob, feature_ids, normalization_parameters, "", False
        )
        workspace.FeedBlob(input_blob, inputs)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(normalized_output_blob)

        np.testing.assert_allclose(
            np.array(
                [
                    [1.0, 1, 0, 0, 1, 0],
                    [2.0, 0, 1, 0, 0, 1],
                    [3.0, 0, 0, 1, 1, 0],
                    [3.0, 0, 0, 1, 0, 0],  # Missing values should go to all 0
                ]
            ),
            normalized_feature_matrix,
        )
Пример #2
0
    def test_normalize_dense_matrix_enum(self):
        normalization_parameters = {
            1:
            NormalizationParameters(
                identify_types.ENUM,
                None,
                None,
                None,
                None,
                [12, 4, 2],
                None,
                None,
                None,
            ),
            2:
            NormalizationParameters(identify_types.CONTINUOUS, None, 0, 0, 1,
                                    None, None, None, None),
            3:
            NormalizationParameters(identify_types.ENUM, None, None, None,
                                    None, [15, 3], None, None, None),
        }
        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()

        inputs = np.zeros([4, 3], dtype=np.float32)
        feature_ids = [2, 1, 3]  # Sorted according to feature type
        inputs[:, feature_ids.index(1)] = [12, 4, 2, 2]
        inputs[:, feature_ids.index(2)] = [1.0, 2.0, 3.0, 3.0]
        inputs[:, feature_ids.index(3)] = [
            15, 3, 15, normalization.MISSING_VALUE
        ]
        input_blob = C2.NextBlob("input_blob")
        workspace.FeedBlob(input_blob, np.array([0], dtype=np.float32))
        normalized_output_blob, _ = preprocessor.normalize_dense_matrix(
            input_blob, feature_ids, normalization_parameters, "", False)
        workspace.FeedBlob(input_blob, inputs)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(normalized_output_blob)

        np.testing.assert_allclose(
            np.array([
                [1.0, 1, 0, 0, 1, 0],
                [2.0, 0, 1, 0, 0, 1],
                [3.0, 0, 0, 1, 1, 0],
                [3.0, 0, 0, 1, 0, 0],  # Missing values should go to all 0
            ]),
            normalized_feature_matrix,
        )
Пример #3
0
    def test_prepare_normalization_and_normalize(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name,
                values,
                10,
                feature_type=self._feature_type_override(name))
        for k, v in normalization_parameters.items():
            if id_to_type(k) == CONTINUOUS:
                self.assertEqual(v.feature_type, CONTINUOUS)
                self.assertIs(v.boxcox_lambda, None)
                self.assertIs(v.boxcox_shift, None)
            elif id_to_type(k) == BOXCOX:
                self.assertEqual(v.feature_type, BOXCOX)
                self.assertIsNot(v.boxcox_lambda, None)
                self.assertIsNot(v.boxcox_shift, None)
            else:
                assert v.feature_type == id_to_type(k)
        sorted_features, _ = sort_features_by_normalization(
            normalization_parameters)

        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()
        input_matrix = np.zeros([10000, len(sorted_features)],
                                dtype=np.float32)
        for i, feature in enumerate(sorted_features):
            input_matrix[:, i] = feature_value_map[feature]
        input_matrix_blob = "input_matrix_blob"
        workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
        output_blob, _ = preprocessor.normalize_dense_matrix(
            input_matrix_blob, sorted_features, normalization_parameters, "",
            False)
        workspace.FeedBlob(input_matrix_blob, input_matrix)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(output_blob)

        normalized_features = {}
        on_column = 0
        for feature in sorted_features:
            norm = normalization_parameters[feature]
            if norm.feature_type == ENUM:
                column_size = len(norm.possible_values)
            else:
                column_size = 1
            normalized_features[
                feature] = normalized_feature_matrix[:,
                                                     on_column:(on_column +
                                                                column_size)]
            on_column += column_size

        self.assertTrue(
            all([
                np.isfinite(parameter.stddev) and np.isfinite(parameter.mean)
                for parameter in normalization_parameters.values()
            ]))
        for k, v in six.iteritems(normalized_features):
            self.assertTrue(np.all(np.isfinite(v)))
            feature_type = normalization_parameters[k].feature_type
            if feature_type == identify_types.PROBABILITY:
                sigmoidv = special.expit(v)
                self.assertTrue(
                    np.all(
                        np.logical_and(np.greater(sigmoidv, 0),
                                       np.less(sigmoidv, 1))))
            elif feature_type == identify_types.ENUM:
                possible_values = normalization_parameters[k].possible_values
                self.assertEqual(v.shape[0], len(feature_value_map[k]))
                self.assertEqual(v.shape[1], len(possible_values))

                possible_value_map = {}
                for i, possible_value in enumerate(possible_values):
                    possible_value_map[possible_value] = i

                for i, row in enumerate(v):
                    original_feature = feature_value_map[k][i]
                    self.assertEqual(possible_value_map[original_feature],
                                     np.where(row == 1)[0][0])
            elif feature_type == identify_types.QUANTILE:
                for i, feature in enumerate(v[0]):
                    original_feature = feature_value_map[k][i]
                    expected = NumpyFeatureProcessor.value_to_quantile(
                        original_feature,
                        normalization_parameters[k].quantiles)
                    self.assertAlmostEqual(feature, expected, 2)
            elif feature_type == identify_types.BINARY:
                pass
            elif (feature_type == identify_types.CONTINUOUS
                  or feature_type == identify_types.BOXCOX):
                one_stddev = np.isclose(np.std(v, ddof=1), 1, atol=0.01)
                zero_stddev = np.isclose(np.std(v, ddof=1), 0, atol=0.01)
                zero_mean = np.isclose(np.mean(v), 0, atol=0.01)
                self.assertTrue(
                    np.all(zero_mean),
                    "mean of feature {} is {}, not 0".format(k, np.mean(v)),
                )
                self.assertTrue(np.all(np.logical_or(one_stddev, zero_stddev)))
            elif feature_type == identify_types.CONTINUOUS_ACTION:
                less_than_max = v < 1
                more_than_min = v > -1
                self.assertTrue(
                    np.all(less_than_max),
                    "values are not less than 1: {}".format(
                        v[less_than_max == False]),
                )
                self.assertTrue(
                    np.all(more_than_min),
                    "values are not more than -1: {}".format(
                        v[more_than_min == False]),
                )
            else:
                raise NotImplementedError()
    def export(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
    ):
        """Export caffe2 preprocessor net and pytorch DQN forward pass as one
        caffe2 net.

        :param trainer ParametricDQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param action_normalization_parameters action NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """

        input_dim = trainer.num_features
        if isinstance(trainer.q_network, DataParallel):
            trainer.q_network = trainer.q_network.module

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.q_network, input_dim, model_on_gpu
        )
        qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer
        )
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output)
            - set(caffe2_netdef.init_net.external_input)
        )

        # ensure state and action IDs have no intersection
        assert (
            len(
                set(state_normalization_parameters.keys())
                & set(action_normalization_parameters.keys())
            )
            == 0
        )

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        preprocessor = PreprocessorNet(True)
        sorted_state_features, _ = sort_features_by_normalization(
            state_normalization_parameters
        )
        state_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_state_features,
        )
        parameters.extend(new_parameters)
        state_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            state_dense_matrix,
            sorted_state_features,
            state_normalization_parameters,
            "state_norm",
            False,
        )
        parameters.extend(new_parameters)

        sorted_action_features, _ = sort_features_by_normalization(
            action_normalization_parameters
        )
        action_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_action_features,
        )
        parameters.extend(new_parameters)
        action_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            action_dense_matrix,
            sorted_action_features,
            action_normalization_parameters,
            "action_norm",
            False,
        )
        parameters.extend(new_parameters)

        state_action_normalized = "state_action_normalized"
        state_action_normalized_dim = "state_action_normalized_dim"
        net.Concat(
            [state_normalized_dense_matrix, action_normalized_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1,
        )

        net.Copy([state_action_normalized], [qnet_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_action_normalized, ["Q"], qnet_output_blob
        )
        parameters.extend(new_parameters)

        flat_q_values_key = (
            "output/string_weighted_multi_categorical_features.values.values"
        )
        num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1])
        q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1])

        # Get 1 x n (number of examples) action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs])
        max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0)

        # Get 1 x n (number of examples) action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32)
        )
        tempered_q_values = C2.Div(q_value_blob, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_blob = C2.Tile(
            C2.FlattenToVec(softmax_act_idxs_nested), num_examples, axis=0
        )

        # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]]
        # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_blob, to=caffe2_pb2.TensorProto.INT64)
        softmax_act_blob = C2.Cast(softmax_act_blob, to=caffe2_pb2.TensorProto.INT64)
        max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1])
        softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob, shape=[1, -1])
        C2.net().Append(
            [max_q_act_blob_nested, softmax_act_blob_nested], [max_q_act_blob_nested]
        )
        transposed_action_idxs = C2.Transpose(max_q_act_blob_nested)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = "output/int_single_categorical_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Copy([flat_transposed_action_idxs], [output_values])

        output_lengths = "output/int_single_categorical_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [flat_q_values_key],
            [output_lengths],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys = "output/int_single_categorical_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.CreateNet(net)
        return ParametricDQNPredictor(net, torch_init_net, parameters, int_features)
Пример #5
0
def benchmark(num_forward_passes):
    """
    Benchmark preprocessor speeds:
        1 - PyTorch
        2 - PyTorch -> ONNX -> C2
        3 - C2
    """

    feature_value_map = gen_data(
        num_binary_features=10,
        num_boxcox_features=10,
        num_continuous_features=10,
        num_enum_features=10,
        num_prob_features=10,
        num_quantile_features=10,
    )

    normalization_parameters = {}
    for name, values in feature_value_map.items():
        normalization_parameters[name] = normalization.identify_parameter(
            name, values, 10
        )

    sorted_features, _ = sort_features_by_normalization(normalization_parameters)

    # Dummy input
    input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)

    # PyTorch Preprocessor
    pytorch_preprocessor = Preprocessor(normalization_parameters, False)
    for i, feature in enumerate(sorted_features):
        input_matrix[:, i] = feature_value_map[feature]

    #################### time pytorch ############################
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        _ = pytorch_preprocessor.forward(input_matrix)
    end = time.time()
    logger.info(
        "PyTorch: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    ################ time pytorch -> ONNX -> caffe2 ####################
    buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
        pytorch_preprocessor, len(sorted_features), False
    )
    input_blob, output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
        buffer
    )
    torch_workspace = caffe2_netdef.workspace
    parameters = torch_workspace.Blobs()
    for blob_str in parameters:
        workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
    torch_init_net = core.Net(caffe2_netdef.init_net)
    torch_predict_net = core.Net(caffe2_netdef.predict_net)
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_blob, input_matrix)
    workspace.RunNetOnce(torch_init_net)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(torch_predict_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "PyTorch -> ONNX -> Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    #################### time caffe2 ############################
    norm_net = core.Net("net")
    C2.set_net(norm_net)
    preprocessor = PreprocessorNet()
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
    output_blob, _ = preprocessor.normalize_dense_matrix(
        input_matrix_blob, sorted_features, normalization_parameters, "", False
    )
    workspace.FeedBlob(input_matrix_blob, input_matrix)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(norm_net)
        workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )
Пример #6
0
    def export(
        cls,
        trainer,
        actions,
        state_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
        set_missing_value_to_zero=False,
    ):
        """Export caffe2 preprocessor net and pytorch DQN forward pass as one
        caffe2 net.

        :param trainer DQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """

        input_dim = trainer.num_features

        q_network = (trainer.q_network.module if isinstance(
            trainer.q_network, DataParallel) else trainer.q_network)

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            q_network, input_dim, model_on_gpu)
        qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer)
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        logger.info("Generated ONNX predict net:")
        logger.info(str(torch_predict_net.Proto()))
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output) -
            set(caffe2_netdef.init_net.external_input))

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/image", np.zeros([1, 1, 1, 1],
                                                   dtype=np.int32))
        workspace.FeedBlob("input/float_features.lengths",
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys",
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values",
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob("input/int_features.lengths",
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob("input/int_features.keys",
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values",
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [
                    input_feature_lengths, input_feature_keys,
                    input_feature_values
                ],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"],
                          [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"],
                          [input_feature_values])

        if state_normalization_parameters is not None:
            sorted_feature_ids = sort_features_by_normalization(
                state_normalization_parameters)[0]
            dense_matrix, new_parameters = sparse_to_dense(
                input_feature_lengths,
                input_feature_keys,
                input_feature_values,
                sorted_feature_ids,
                set_missing_value_to_zero=set_missing_value_to_zero,
            )
            parameters.extend(new_parameters)
            preprocessor_net = PreprocessorNet()
            state_normalized_dense_matrix, new_parameters = preprocessor_net.normalize_dense_matrix(
                dense_matrix,
                sorted_feature_ids,
                state_normalization_parameters,
                "state_norm_",
                True,
            )
            parameters.extend(new_parameters)
        else:
            # Image input.  Note: Currently this does the wrong thing if
            #   more than one image is passed at a time.
            state_normalized_dense_matrix = "input/image"

        net.Copy([state_normalized_dense_matrix], [qnet_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_normalized_dense_matrix, actions,
            qnet_output_blob)
        parameters.extend(new_parameters)

        # Get 1 x n action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0)
        shape_of_num_of_states = "num_states_shape"
        C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states])
        num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1])

        # Get 1 x n action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32))
        tempered_q_values = C2.Div(q_values, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_idxs = "softmax_policy_actions"
        C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0)

        action_names = C2.NextBlob("action_names")
        parameters.append(action_names)
        workspace.FeedBlob(action_names, np.array(actions))

        # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]]
        # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_idxs,
                                 to=caffe2_pb2.TensorProto.INT32)
        softmax_act_blob = C2.Cast(softmax_act_idxs,
                                   to=caffe2_pb2.TensorProto.INT32)
        C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob])
        transposed_action_idxs = C2.Transpose(max_q_act_blob)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        workspace.FeedBlob(OUTPUT_SINGLE_CAT_VALS_NAME,
                           np.zeros(1, dtype=np.int64))
        C2.net().Gather([action_names, flat_transposed_action_idxs],
                        [OUTPUT_SINGLE_CAT_VALS_NAME])

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_LENGTHS_NAME,
                           np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [shape_of_num_of_states],
            [OUTPUT_SINGLE_CAT_LENGTHS_NAME],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_KEYS_NAME,
                           np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1],
                            value=0,
                            dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1],
                            value=1,
                            dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0)
        C2.net().FlattenToVec([output_key_tile], [OUTPUT_SINGLE_CAT_KEYS_NAME])

        workspace.CreateNet(net)
        return DQNPredictor(net, torch_init_net, parameters, int_features)
Пример #7
0
    def export_actor(
        cls,
        trainer,
        state_normalization_parameters,
        action_feature_ids,
        min_action_range_tensor_serving,
        max_action_range_tensor_serving,
        int_features=False,
        model_on_gpu=False,
    ):
        """Export caffe2 preprocessor net and pytorch actor forward pass as one
        caffe2 net.

        :param trainer DDPGTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param min_action_range_tensor_serving pytorch tensor that specifies
            min action value for each dimension
        :param max_action_range_tensor_serving pytorch tensor that specifies
            min action value for each dimension
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """
        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)
        parameters: List[str] = []

        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        preprocessor = PreprocessorNet()
        sorted_features, _ = sort_features_by_normalization(
            state_normalization_parameters
        )
        state_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_features,
        )
        parameters.extend(new_parameters)
        state_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            state_dense_matrix,
            sorted_features,
            state_normalization_parameters,
            "state_norm",
            False,
        )
        parameters.extend(new_parameters)

        torch_init_net, torch_predict_net, new_parameters, actor_input_blob, actor_output_blob, min_action_training_blob, max_action_training_blob, min_action_serving_blob, max_action_serving_blob = DDPGPredictor.generate_train_net(
            trainer,
            model,
            min_action_range_tensor_serving,
            max_action_range_tensor_serving,
            model_on_gpu,
        )
        parameters.extend(new_parameters)
        net.Copy([state_normalized_dense_matrix], [actor_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        # Scale actors actions from [-1, 1] to serving range
        prev_range = C2.Sub(max_action_training_blob, min_action_training_blob)
        new_range = C2.Sub(max_action_serving_blob, min_action_serving_blob)
        subtract_prev_min = C2.Sub(actor_output_blob, min_action_training_blob)
        div_by_prev_range = C2.Div(subtract_prev_min, prev_range)
        scaled_for_serving_actions = C2.Add(
            C2.Mul(div_by_prev_range, new_range), min_action_serving_blob
        )

        output_lengths = "output/float_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [C2.FlattenToVec(C2.ArgMax(actor_output_blob))],
            [output_lengths],
            value=trainer.actor.layers[-1].out_features,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        action_feature_ids_blob = C2.NextBlob("action_feature_ids")
        workspace.FeedBlob(
            action_feature_ids_blob, np.array(action_feature_ids, dtype=np.int64)
        )
        parameters.append(action_feature_ids_blob)

        output_keys = "output/float_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        num_examples, _ = C2.Reshape(C2.Size("input/float_features.lengths"), shape=[1])
        C2.net().Tile([action_feature_ids_blob, num_examples], [output_keys], axis=1)

        output_values = "output/float_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.float32))
        C2.net().FlattenToVec([scaled_for_serving_actions], [output_values])

        workspace.CreateNet(net)
        return DDPGPredictor(net, torch_init_net, parameters, int_features)
Пример #8
0
    def test_prepare_normalization_and_normalize(self):
        feature_value_map = read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                name, values, 10, feature_type=self._feature_type_override(name)
            )
        for k, v in normalization_parameters.items():
            if id_to_type(k) == CONTINUOUS:
                self.assertEqual(v.feature_type, CONTINUOUS)
                self.assertIs(v.boxcox_lambda, None)
                self.assertIs(v.boxcox_shift, None)
            elif id_to_type(k) == BOXCOX:
                self.assertEqual(v.feature_type, BOXCOX)
                self.assertIsNot(v.boxcox_lambda, None)
                self.assertIsNot(v.boxcox_shift, None)
            else:
                assert v.feature_type == id_to_type(k)
        sorted_features, _ = sort_features_by_normalization(normalization_parameters)

        norm_net = core.Net("net")
        C2.set_net(norm_net)
        preprocessor = PreprocessorNet()
        input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)
        for i, feature in enumerate(sorted_features):
            input_matrix[:, i] = feature_value_map[feature]
        input_matrix_blob = "input_matrix_blob"
        workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
        output_blob, _ = preprocessor.normalize_dense_matrix(
            input_matrix_blob, sorted_features, normalization_parameters, "", False
        )
        workspace.FeedBlob(input_matrix_blob, input_matrix)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(output_blob)

        normalized_features = {}
        on_column = 0
        for feature in sorted_features:
            norm = normalization_parameters[feature]
            if norm.feature_type == ENUM:
                column_size = len(norm.possible_values)
            else:
                column_size = 1
            normalized_features[feature] = normalized_feature_matrix[
                :, on_column : (on_column + column_size)
            ]
            on_column += column_size

        self.assertTrue(
            all(
                [
                    np.isfinite(parameter.stddev) and np.isfinite(parameter.mean)
                    for parameter in normalization_parameters.values()
                ]
            )
        )
        for k, v in six.iteritems(normalized_features):
            self.assertTrue(np.all(np.isfinite(v)))
            feature_type = normalization_parameters[k].feature_type
            if feature_type == identify_types.PROBABILITY:
                sigmoidv = special.expit(v)
                self.assertTrue(
                    np.all(
                        np.logical_and(np.greater(sigmoidv, 0), np.less(sigmoidv, 1))
                    )
                )
            elif feature_type == identify_types.ENUM:
                possible_values = normalization_parameters[k].possible_values
                self.assertEqual(v.shape[0], len(feature_value_map[k]))
                self.assertEqual(v.shape[1], len(possible_values))

                possible_value_map = {}
                for i, possible_value in enumerate(possible_values):
                    possible_value_map[possible_value] = i

                for i, row in enumerate(v):
                    original_feature = feature_value_map[k][i]
                    self.assertEqual(
                        possible_value_map[original_feature], np.where(row == 1)[0][0]
                    )
            elif feature_type == identify_types.QUANTILE:
                for i, feature in enumerate(v[0]):
                    original_feature = feature_value_map[k][i]
                    expected = NumpyFeatureProcessor.value_to_quantile(
                        original_feature, normalization_parameters[k].quantiles
                    )
                    self.assertAlmostEqual(feature, expected, 2)
            elif feature_type == identify_types.BINARY:
                pass
            elif (
                feature_type == identify_types.CONTINUOUS
                or feature_type == identify_types.BOXCOX
            ):
                one_stddev = np.isclose(np.std(v, ddof=1), 1, atol=0.01)
                zero_stddev = np.isclose(np.std(v, ddof=1), 0, atol=0.01)
                zero_mean = np.isclose(np.mean(v), 0, atol=0.01)
                self.assertTrue(
                    np.all(zero_mean),
                    "mean of feature {} is {}, not 0".format(k, np.mean(v)),
                )
                self.assertTrue(np.all(np.logical_or(one_stddev, zero_stddev)))
            elif feature_type == identify_types.CONTINUOUS_ACTION:
                less_than_max = v < 1
                more_than_min = v > -1
                self.assertTrue(
                    np.all(less_than_max),
                    "values are not less than 1: {}".format(v[less_than_max == False]),
                )
                self.assertTrue(
                    np.all(more_than_min),
                    "values are not more than -1: {}".format(v[more_than_min == False]),
                )
            else:
                raise NotImplementedError()
Пример #9
0
    def export(cls,
               trainer,
               actions,
               state_normalization_parameters,
               int_features=False):
        """ Creates a DiscreteActionPredictor from a DiscreteActionTrainer.

        :param trainer DiscreteActionTrainer
        :param actions list of action names
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        """

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/image", np.zeros([1, 1, 1, 1],
                                                   dtype=np.int32))
        workspace.FeedBlob("input/float_features.lengths",
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys",
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values",
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = C2.NextBlob("input_feature_lengths")
        input_feature_keys = C2.NextBlob("input_feature_keys")
        input_feature_values = C2.NextBlob("input_feature_values")

        if int_features:
            workspace.FeedBlob("input/int_features.lengths",
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob("input/int_features.keys",
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values",
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [
                    input_feature_lengths, input_feature_keys,
                    input_feature_values
                ],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"],
                          [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"],
                          [input_feature_values])

        parameters = []
        if state_normalization_parameters is not None:
            preprocessor = PreprocessorNet(True)
            sorted_features, _ = sort_features_by_normalization(
                state_normalization_parameters)
            state_dense_matrix, new_parameters = sparse_to_dense(
                input_feature_lengths,
                input_feature_keys,
                input_feature_values,
                sorted_features,
            )
            parameters.extend(new_parameters)
            normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
                state_dense_matrix,
                sorted_features,
                state_normalization_parameters,
                "state_norm",
                False,
            )
            parameters.extend(new_parameters)
        else:
            # Image input.  Note: Currently this does the wrong thing if
            #   more than one image is passed at a time.
            normalized_dense_matrix = "input/image"

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, normalized_dense_matrix, actions)
        parameters.extend(new_parameters)

        # Get 1 x n action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0)
        shape_of_num_of_states = "num_states_shape"
        C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states])
        num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1])

        # Get 1 x n action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32))
        tempered_q_values = C2.Div(q_values, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_idxs = "softmax_policy_actions"
        C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0)

        action_names = C2.NextBlob("action_names")
        parameters.append(action_names)
        workspace.FeedBlob(action_names, np.array(actions))

        # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]]
        # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_idxs,
                                 to=caffe2_pb2.TensorProto.INT32)
        softmax_act_blob = C2.Cast(softmax_act_idxs,
                                   to=caffe2_pb2.TensorProto.INT32)
        C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob])
        transposed_action_idxs = C2.Transpose(max_q_act_blob)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = "output/string_single_categorical_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Gather([action_names, flat_transposed_action_idxs],
                        [output_values])

        output_lengths = "output/string_single_categorical_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [shape_of_num_of_states],
            [output_lengths],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys = "output/string_single_categorical_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1],
                            value=0,
                            dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1],
                            value=1,
                            dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return DiscreteActionPredictor(net, parameters, int_features)
Пример #10
0
    def test_prepare_normalization_and_normalize(self):
        features, feature_value_map = preprocessing_util.read_data()

        normalization_parameters = {}
        for name, values in feature_value_map.items():
            normalization_parameters[name] = normalization.identify_parameter(
                values, 10)
        for k, v in normalization_parameters.items():
            if k == CONTINUOUS:
                self.assertEqual(v.feature_type, CONTINUOUS)
                self.assertIs(v.boxcox_lambda, None)
                self.assertIs(v.boxcox_shift, None)
            elif k == BOXCOX:
                self.assertEqual(v.feature_type, BOXCOX)
                self.assertIsNot(v.boxcox_lambda, None)
                self.assertIsNot(v.boxcox_shift, None)
            else:
                assert v.feature_type == k or v.feature_type + "_2" + k

        norm_net = core.Net("net")
        preprocessor = PreprocessorNet(norm_net, False)
        input_matrix = np.zeros([10000, len(features)], dtype=np.float32)
        for i, feature in enumerate(features):
            input_matrix[:, i] = feature_value_map[feature]
        input_matrix_blob = 'input_matrix_blob'
        workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
        output_blob, _ = preprocessor.normalize_dense_matrix(
            input_matrix_blob, features, normalization_parameters, '')
        workspace.FeedBlob(input_matrix_blob, input_matrix)
        workspace.RunNetOnce(norm_net)
        normalized_feature_matrix = workspace.FetchBlob(output_blob)

        normalized_features = {}
        on_column = 0
        for feature in features:
            norm = normalization_parameters[feature]
            if norm.feature_type == ENUM:
                column_size = len(norm.possible_values)
            else:
                column_size = 1
            normalized_features[feature] = \
                normalized_feature_matrix[:, on_column:(
                    on_column + column_size
                )]
            on_column += column_size

        self.assertTrue(
            all([
                np.isfinite(parameter.stddev) and np.isfinite(parameter.mean)
                for parameter in normalization_parameters.values()
            ]))
        for k, v in six.iteritems(normalized_features):
            self.assertTrue(np.all(np.isfinite(v)))
            feature_type = normalization_parameters[k].feature_type
            if feature_type == identify_types.PROBABILITY:
                sigmoidv = special.expit(v)
                self.assertTrue(
                    np.all(
                        np.logical_and(np.greater(sigmoidv, 0),
                                       np.less(sigmoidv, 1))))
            elif feature_type == identify_types.ENUM:
                possible_values = normalization_parameters[k].possible_values
                self.assertEqual(v.shape[0], len(feature_value_map[k]))
                self.assertEqual(v.shape[1], len(possible_values))

                possible_value_map = {}
                for i, possible_value in enumerate(possible_values):
                    possible_value_map[possible_value] = i

                for i, row in enumerate(v):
                    original_feature = feature_value_map[k][i]
                    self.assertEqual(possible_value_map[original_feature],
                                     np.where(row == 1)[0][0])
            elif feature_type == identify_types.QUANTILE:
                for i, feature in enumerate(v[0]):
                    original_feature = feature_value_map[k][i]
                    expected = self._value_to_quantile(
                        original_feature,
                        normalization_parameters[k].quantiles)
                    self.assertAlmostEqual(feature, expected, 2)
            elif feature_type == identify_types.BINARY:
                pass
            elif feature_type == identify_types.CONTINUOUS or \
                    feature_type == identify_types.BOXCOX:
                one_stddev = np.isclose(np.std(v, ddof=1), 1, atol=0.01)
                zero_stddev = np.isclose(np.std(v, ddof=1), 0, atol=0.01)
                zero_mean = np.isclose(np.mean(v), 0, atol=0.01)
                self.assertTrue(
                    np.all(zero_mean),
                    'mean of feature {} is {}, not 0'.format(k, np.mean(v)))
                self.assertTrue(np.all(np.logical_or(one_stddev, zero_stddev)))
            else:
                raise NotImplementedError()
Пример #11
0
def benchmark(num_forward_passes):
    """
    Benchmark preprocessor speeds:
        1 - PyTorch
        2 - PyTorch -> ONNX -> C2
        3 - C2
    """

    feature_value_map = gen_data(
        num_binary_features=10,
        num_boxcox_features=10,
        num_continuous_features=10,
        num_enum_features=10,
        num_prob_features=10,
        num_quantile_features=10,
    )

    normalization_parameters = {}
    for name, values in feature_value_map.items():
        normalization_parameters[name] = normalization.identify_parameter(
            name, values, 10
        )

    sorted_features, _ = sort_features_by_normalization(normalization_parameters)

    # Dummy input
    input_matrix = np.zeros([10000, len(sorted_features)], dtype=np.float32)

    # PyTorch Preprocessor
    pytorch_preprocessor = Preprocessor(normalization_parameters, False)
    for i, feature in enumerate(sorted_features):
        input_matrix[:, i] = feature_value_map[feature]

    #################### time pytorch ############################
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        _ = pytorch_preprocessor.forward(input_matrix)
    end = time.time()
    logger.info(
        "PyTorch: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    ################ time pytorch -> ONNX -> caffe2 ####################
    buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
        pytorch_preprocessor, len(sorted_features), False
    )
    input_blob, output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
        buffer
    )
    torch_workspace = caffe2_netdef.workspace
    parameters = torch_workspace.Blobs()
    for blob_str in parameters:
        workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
    torch_init_net = core.Net(caffe2_netdef.init_net)
    torch_predict_net = core.Net(caffe2_netdef.predict_net)
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_blob, input_matrix)
    workspace.RunNetOnce(torch_init_net)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(torch_predict_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "PyTorch -> ONNX -> Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )

    #################### time caffe2 ############################
    norm_net = core.Net("net")
    C2.set_net(norm_net)
    preprocessor = PreprocessorNet()
    input_matrix_blob = "input_matrix_blob"
    workspace.FeedBlob(input_matrix_blob, np.array([], dtype=np.float32))
    output_blob, _ = preprocessor.normalize_dense_matrix(
        input_matrix_blob, sorted_features, normalization_parameters, "", False
    )
    workspace.FeedBlob(input_matrix_blob, input_matrix)
    start = time.time()
    for _ in range(NUM_FORWARD_PASSES):
        workspace.RunNetOnce(norm_net)
        _ = workspace.FetchBlob(output_blob)
    end = time.time()
    logger.info(
        "Caffe2: {} forward passes done in {} seconds".format(
            NUM_FORWARD_PASSES, end - start
        )
    )
Пример #12
0
    def export_critic(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
    ):
        """Export caffe2 preprocessor net and pytorch critic forward pass as one
        caffe2 net.

        :param trainer DDPGTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param action_normalization_parameters action NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        """
        input_dim = trainer.state_dim + trainer.action_dim
        if isinstance(trainer.critic, DataParallel):
            trainer.critic = trainer.critic.module

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.critic, input_dim, model_on_gpu)
        critic_input_blob, critic_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer)
        torch_workspace = caffe2_netdef.workspace

        parameters = []
        for blob_str in torch_workspace.Blobs():
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))
            parameters.append(blob_str)

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/float_features.lengths",
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys",
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values",
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob("input/int_features.lengths",
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob("input/int_features.keys",
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values",
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [
                    input_feature_lengths, input_feature_keys,
                    input_feature_values
                ],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"],
                          [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"],
                          [input_feature_values])

        preprocessor = PreprocessorNet(True)
        sorted_features, _ = sort_features_by_normalization(
            state_normalization_parameters)
        state_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_features,
        )
        parameters.extend(new_parameters)
        state_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            state_dense_matrix,
            sorted_features,
            state_normalization_parameters,
            "state_norm",
            False,
        )
        parameters.extend(new_parameters)

        # Don't normalize actions, just go from sparse -> dense
        action_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            list(action_normalization_parameters.keys()
                 ),  # TODO: Clean up in D10161240
        )
        parameters.extend(new_parameters)
        state_action_normalized = "state_action_normalized"
        state_action_normalized_dim = "state_action_normalized_dim"
        net.Concat(
            [state_normalized_dense_matrix, action_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1,
        )
        net.Copy([state_action_normalized], [critic_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_init_net)
        net.AppendNet(torch_predict_net)

        C2.FlattenToVec(C2.ArgMax(critic_output_blob))
        output_lengths = "output/float_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [C2.FlattenToVec(C2.ArgMax(critic_output_blob))],
            [output_lengths],
            value=trainer.critic.layers[-1].out_features,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys_int32 = "output_keys_int32"
        output_keys = "output/float_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        C2.net().LengthsRangeFill([output_lengths], [output_keys_int32])
        C2.net().Cast([output_keys_int32], [output_keys],
                      to=caffe2_pb2.TensorProto.INT64)

        output_values = "output/float_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.float32))
        C2.net().FlattenToVec([critic_output_blob], [output_values])

        workspace.CreateNet(net)
        return DDPGPredictor(net, torch_init_net, parameters, int_features)
Пример #13
0
    def export_actor(
        cls,
        trainer,
        state_normalization_parameters,
        min_action_range_tensor_serving,
        max_action_range_tensor_serving,
        int_features=False,
        model_on_gpu=False,
    ):
        """Export caffe2 preprocessor net and pytorch actor forward pass as one
        caffe2 net.

        :param trainer DDPGTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param min_action_range_tensor_serving pytorch tensor that specifies
            min action value for each dimension
        :param max_action_range_tensor_serving pytorch tensor that specifies
            min action value for each dimension
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """
        input_dim = trainer.state_dim
        if isinstance(trainer.actor, DataParallel):
            trainer.actor = trainer.actor.module

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            trainer.actor, input_dim, model_on_gpu)
        actor_input_blob, actor_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer)
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output) -
            set(caffe2_netdef.init_net.external_input))

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        # Feed action scaling tensors for serving
        min_action_serving_blob = C2.NextBlob(
            "min_action_range_tensor_serving")
        workspace.FeedBlob(min_action_serving_blob,
                           min_action_range_tensor_serving.cpu().data.numpy())
        parameters.append(str(min_action_serving_blob))

        max_action_serving_blob = C2.NextBlob(
            "max_action_range_tensor_serving")
        workspace.FeedBlob(max_action_serving_blob,
                           max_action_range_tensor_serving.cpu().data.numpy())
        parameters.append(str(max_action_serving_blob))

        # Feed action scaling tensors for training [-1, 1] due to tanh actor
        min_vals_training = trainer.min_action_range_tensor_training.cpu(
        ).data.numpy()
        min_action_training_blob = C2.NextBlob(
            "min_action_range_tensor_training")
        workspace.FeedBlob(min_action_training_blob, min_vals_training)
        parameters.append(str(min_action_training_blob))

        max_vals_training = trainer.max_action_range_tensor_training.cpu(
        ).data.numpy()
        max_action_training_blob = C2.NextBlob(
            "max_action_range_tensor_training")
        workspace.FeedBlob(max_action_training_blob, max_vals_training)
        parameters.append(str(max_action_training_blob))

        workspace.FeedBlob("input/float_features.lengths",
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys",
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values",
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob("input/int_features.lengths",
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob("input/int_features.keys",
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values",
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [
                    input_feature_lengths, input_feature_keys,
                    input_feature_values
                ],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"],
                          [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"],
                          [input_feature_values])

        preprocessor = PreprocessorNet(True)
        sorted_features, _ = sort_features_by_normalization(
            state_normalization_parameters)
        state_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            sorted_features,
        )
        parameters.extend(new_parameters)
        state_normalized_dense_matrix, new_parameters = preprocessor.normalize_dense_matrix(
            state_dense_matrix,
            sorted_features,
            state_normalization_parameters,
            "state_norm",
            False,
        )
        parameters.extend(new_parameters)

        net.Copy([state_normalized_dense_matrix], [actor_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        C2.FlattenToVec(C2.ArgMax(actor_output_blob))
        output_lengths = "output/float_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [C2.FlattenToVec(C2.ArgMax(actor_output_blob))],
            [output_lengths],
            value=trainer.actor.layers[-1].out_features,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys_int32 = "output_keys_int32"
        output_keys = "output/float_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        C2.net().LengthsRangeFill([output_lengths], [output_keys_int32])
        C2.net().Cast([output_keys_int32], [output_keys],
                      to=caffe2_pb2.TensorProto.INT64)

        output_values = "output/float_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.float32))
        # Scale actors actions from [-1, 1] to serving range
        prev_range = C2.Sub(max_action_training_blob, min_action_training_blob)
        new_range = C2.Sub(max_action_serving_blob, min_action_serving_blob)
        subtract_prev_min = C2.Sub(actor_output_blob, min_action_training_blob)
        div_by_prev_range = C2.Div(subtract_prev_min, prev_range)
        scaled_for_serving_actions = C2.Add(
            C2.Mul(div_by_prev_range, new_range), min_action_serving_blob)
        C2.net().FlattenToVec([scaled_for_serving_actions], [output_values])

        workspace.CreateNet(net)
        return DDPGPredictor(net, torch_init_net, parameters, int_features)
Пример #14
0
    def export(
        cls,
        trainer,
        actions,
        state_normalization_parameters,
        int_features=False,
        model_on_gpu=False,
        set_missing_value_to_zero=False,
    ):
        """Export caffe2 preprocessor net and pytorch DQN forward pass as one
        caffe2 net.

        :param trainer DQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        :param model_on_gpu boolean indicating if the model is a GPU model or CPU model
        """

        input_dim = trainer.num_features

        q_network = (
            trainer.q_network.module
            if isinstance(trainer.q_network, DataParallel)
            else trainer.q_network
        )

        buffer = PytorchCaffe2Converter.pytorch_net_to_buffer(
            q_network, input_dim, model_on_gpu
        )
        qnet_input_blob, qnet_output_blob, caffe2_netdef = PytorchCaffe2Converter.buffer_to_caffe2_netdef(
            buffer
        )
        torch_workspace = caffe2_netdef.workspace

        parameters = torch_workspace.Blobs()
        for blob_str in parameters:
            workspace.FeedBlob(blob_str, torch_workspace.FetchBlob(blob_str))

        torch_init_net = core.Net(caffe2_netdef.init_net)
        torch_predict_net = core.Net(caffe2_netdef.predict_net)
        logger.info("Generated ONNX predict net:")
        logger.info(str(torch_predict_net.Proto()))
        # While converting to metanetdef, the external_input of predict_net
        # will be recomputed. Add the real output of init_net to parameters
        # to make sure they will be counted.
        parameters.extend(
            set(caffe2_netdef.init_net.external_output)
            - set(caffe2_netdef.init_net.external_input)
        )

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/image", np.zeros([1, 1, 1, 1], dtype=np.int32))
        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        if state_normalization_parameters is not None:
            sorted_feature_ids = sort_features_by_normalization(
                state_normalization_parameters
            )[0]
            dense_matrix, new_parameters = sparse_to_dense(
                input_feature_lengths,
                input_feature_keys,
                input_feature_values,
                sorted_feature_ids,
                set_missing_value_to_zero=set_missing_value_to_zero,
            )
            parameters.extend(new_parameters)
            preprocessor_net = PreprocessorNet()
            state_normalized_dense_matrix, new_parameters = preprocessor_net.normalize_dense_matrix(
                dense_matrix,
                sorted_feature_ids,
                state_normalization_parameters,
                "state_norm_",
                True,
            )
            parameters.extend(new_parameters)
        else:
            # Image input.  Note: Currently this does the wrong thing if
            #   more than one image is passed at a time.
            state_normalized_dense_matrix = "input/image"

        net.Copy([state_normalized_dense_matrix], [qnet_input_blob])

        workspace.RunNetOnce(model.param_init_net)
        workspace.RunNetOnce(torch_init_net)

        net.AppendNet(torch_predict_net)

        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_normalized_dense_matrix, actions, qnet_output_blob
        )
        parameters.extend(new_parameters)

        # Get 1 x n action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0)
        shape_of_num_of_states = "num_states_shape"
        C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states])
        num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1])

        # Get 1 x n action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32)
        )
        tempered_q_values = C2.Div(q_values, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_idxs = "softmax_policy_actions"
        C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0)

        action_names = C2.NextBlob("action_names")
        parameters.append(action_names)
        workspace.FeedBlob(action_names, np.array(actions))

        # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]]
        # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_idxs, to=caffe2_pb2.TensorProto.INT32)
        softmax_act_blob = C2.Cast(softmax_act_idxs, to=caffe2_pb2.TensorProto.INT32)
        C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob])
        transposed_action_idxs = C2.Transpose(max_q_act_blob)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        workspace.FeedBlob(OUTPUT_SINGLE_CAT_VALS_NAME, np.zeros(1, dtype=np.int64))
        C2.net().Gather(
            [action_names, flat_transposed_action_idxs], [OUTPUT_SINGLE_CAT_VALS_NAME]
        )

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_LENGTHS_NAME, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [shape_of_num_of_states],
            [OUTPUT_SINGLE_CAT_LENGTHS_NAME],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        workspace.FeedBlob(OUTPUT_SINGLE_CAT_KEYS_NAME, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0)
        C2.net().FlattenToVec([output_key_tile], [OUTPUT_SINGLE_CAT_KEYS_NAME])

        workspace.CreateNet(net)
        return DQNPredictor(net, torch_init_net, parameters, int_features)