def policy(self, float_state_features, int_state_features, actions):
     float_examples = []
     for i in range(len(float_state_features)):
         float_examples.append({**float_state_features[i], **actions[i]})
     if int_state_features is None:
         return RLPredictor.policy(self, float_examples)
     return RLPredictor.policy(self, float_examples, int_state_features)
 def __init__(self, net, parameters, int_features=False):
     RLPredictor.__init__(self, net, parameters, int_features)
     self.is_discrete = True
     self._output_blobs.extend([
         'output/string_single_categorical_features.keys',
         'output/string_single_categorical_features.lengths',
         'output/string_single_categorical_features.values',
     ])
 def __init__(self, net, parameters, int_features=False):
     RLPredictor.__init__(self, net, parameters, int_features)
     self.is_discrete = False
     self._output_blobs.extend([
         "output/int_single_categorical_features.keys",
         "output/int_single_categorical_features.lengths",
         "output/int_single_categorical_features.values",
     ])
    def predict(self, float_state_features, int_state_features, actions):
        """ Returns values for each state/action pair.

        :param float_state_features states as list of feature -> float value dict
        :param int_state_features states as list of feature -> int value dict
        :param actions actions as list of feature -> value dict
        """
        float_examples = []
        for i in range(len(float_state_features)):
            float_examples.append({**float_state_features[i], **actions[i]})
        if int_state_features is None:
            return RLPredictor.predict(self, float_examples)
        return RLPredictor.predict(self, float_examples, int_state_features)
Пример #5
0
    def predict(self, states, actions):
        """ Returns values for each state/action pair
        :param states states as list of feature -> value dict
        :param actions actions as list of feature -> value dict
        """

        examples = []
        for i in range(len(states)):
            examples.append({**states[i], **actions[i]})
        return RLPredictor.predict(self, examples)
Пример #6
0
    def export(cls, trainer, actions, normalization_parameters):
        """ Creates DiscreteActionPredictor from a list of action trainers

        :param trainer DiscreteActionTrainer
        :param features list of state feature names
        :param actions list of action names
        """

        model = model_helper.ModelHelper(name="predictor")
        net = model.net

        workspace.FeedBlob('input/float_features.lengths',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.keys',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.values',
                           np.zeros(1, dtype=np.float32))

        preprocessor = PreprocessorNet(net, True)
        parameters = []
        parameters.extend(preprocessor.parameters)
        normalized_dense_matrix, new_parameters = preprocessor.normalize_sparse_matrix(
            'input/float_features.lengths',
            'input/float_features.keys',
            'input/float_features.values',
            normalization_parameters,
            'state_norm',
        )
        parameters.extend(new_parameters)

        new_parameters = RLPredictor._forward_pass(
            model,
            trainer,
            normalized_dense_matrix,
            actions,
        )
        parameters.extend(new_parameters)

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return DiscreteActionPredictor(net, parameters)
    def export(cls,
               trainer,
               actions,
               state_normalization_parameters,
               int_features=False):
        """ Creates a DiscreteActionPredictor from a DiscreteActionTrainer.

        :param trainer DiscreteActionTrainer
        :param actions list of action names
        :param state_normalization_parameters state NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        """

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob('input/image', np.zeros([1, 1, 1, 1],
                                                   dtype=np.int32))
        workspace.FeedBlob('input/float_features.lengths',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.keys',
                           np.zeros(1, dtype=np.int64))
        workspace.FeedBlob('input/float_features.values',
                           np.zeros(1, dtype=np.float32))

        input_feature_lengths = 'input_feature_lengths'
        input_feature_keys = 'input_feature_keys'
        input_feature_values = 'input_feature_values'

        if int_features:
            workspace.FeedBlob('input/int_features.lengths',
                               np.zeros(1, dtype=np.int32))
            workspace.FeedBlob('input/int_features.keys',
                               np.zeros(1, dtype=np.int64))
            workspace.FeedBlob('input/int_features.values',
                               np.zeros(1, dtype=np.int32))
            C2.net().Cast(['input/int_features.values'],
                          ['input/int_features.values_float'],
                          dtype=caffe2_pb2.TensorProto.FLOAT)
            C2.net().MergeMultiScalarFeatureTensors([
                'input/float_features.lengths', 'input/float_features.keys',
                'input/float_features.values', 'input/int_features.lengths',
                'input/int_features.keys', 'input/int_features.values_float'
            ], [
                input_feature_lengths, input_feature_keys, input_feature_values
            ])
        else:
            C2.net().Copy(['input/float_features.lengths'],
                          [input_feature_lengths])
            C2.net().Copy(['input/float_features.keys'], [input_feature_keys])
            C2.net().Copy(['input/float_features.values'],
                          [input_feature_values])

        parameters = []
        if state_normalization_parameters is not None:
            preprocessor = PreprocessorNet(net, True)
            parameters.extend(preprocessor.parameters)
            normalized_dense_matrix, new_parameters = \
                preprocessor.normalize_sparse_matrix(
                    input_feature_lengths,
                    input_feature_keys,
                    input_feature_values,
                    state_normalization_parameters,
                    'state_norm',
                )
            parameters.extend(new_parameters)
        else:
            # Image input.  Note: Currently this does the wrong thing if
            #   more than one image is passed at a time.
            normalized_dense_matrix = 'input/image'

        new_parameters, q_values = RLPredictor._forward_pass(
            model,
            trainer,
            normalized_dense_matrix,
            actions,
        )
        parameters.extend(new_parameters)

        # Get 1 x n action index tensor under the max_q policy
        max_q_act_idxs = 'max_q_policy_actions'
        C2.net().Flatten([C2.ArgMax(q_values)], [max_q_act_idxs], axis=0)
        shape_of_num_of_states = 'num_states_shape'
        C2.net().FlattenToVec([max_q_act_idxs], [shape_of_num_of_states])
        num_states, _ = C2.Reshape(C2.Size(shape_of_num_of_states), shape=[1])

        # Get 1 x n action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32))
        tempered_q_values = C2.Div(q_values, "temperature", broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = 'softmax_act_idxs_nested'
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_idxs = 'softmax_policy_actions'
        C2.net().Flatten([softmax_act_idxs_nested], [softmax_act_idxs], axis=0)

        # Concat action index tensors to get 2 x n tensor - [[max_q], [softmax]]
        # transpose & flatten to get [a1_maxq, a1_softmax, a2_maxq, a2_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_idxs,
                                 to=caffe2_pb2.TensorProto.INT32)
        softmax_act_blob = C2.Cast(softmax_act_idxs,
                                   to=caffe2_pb2.TensorProto.INT32)
        C2.net().Append([max_q_act_blob, softmax_act_blob], [max_q_act_blob])
        transposed_action_idxs = C2.Transpose(max_q_act_blob)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = 'output/string_single_categorical_features.values'
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Gather(["action_names", flat_transposed_action_idxs],
                        [output_values])

        output_lengths = 'output/string_single_categorical_features.lengths'
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill([shape_of_num_of_states], [output_lengths],
                              value=2,
                              dtype=caffe2_pb2.TensorProto.INT32)

        output_keys = 'output/string_single_categorical_features.keys'
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1],
                            value=0,
                            dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1],
                            value=1,
                            dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_states, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return DiscreteActionPredictor(net, parameters, int_features)
Пример #8
0
    def export(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
    ):
        """ Creates ContinuousActionDQNPredictor from a list of action trainers

        :param trainer ContinuousActionDQNPredictor
        :param state_features list of state feature names
        :param action_features list of action feature names
        """
        # ensure state and action IDs have no intersection
        assert (len(
            set(state_normalization_parameters.keys())
            & set(action_normalization_parameters.keys())) == 0)

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob('input/float_features.lengths',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.keys',
                           np.zeros(1, dtype=np.int32))
        workspace.FeedBlob('input/float_features.values',
                           np.zeros(1, dtype=np.float32))

        preprocessor = PreprocessorNet(net, True)
        parameters = []
        parameters.extend(preprocessor.parameters)
        state_normalized_dense_matrix, new_parameters = \
            preprocessor.normalize_sparse_matrix(
                'input/float_features.lengths',
                'input/float_features.keys',
                'input/float_features.values',
                state_normalization_parameters,
                'state_norm',
            )
        parameters.extend(new_parameters)
        action_normalized_dense_matrix, new_parameters = \
            preprocessor.normalize_sparse_matrix(
                'input/float_features.lengths',
                'input/float_features.keys',
                'input/float_features.values',
                action_normalization_parameters,
                'action_norm',
            )
        parameters.extend(new_parameters)
        state_action_normalized = 'state_action_normalized'
        state_action_normalized_dim = 'state_action_normalized_dim'
        net.Concat(
            [state_normalized_dense_matrix, action_normalized_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1)
        new_parameters, q_values = RLPredictor._forward_pass(
            model,
            trainer,
            state_action_normalized,
            ['Q'],
        )
        parameters.extend(new_parameters)

        flat_q_values_key = \
            'output/string_weighted_multi_categorical_features.values.values'
        num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1])
        q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1])

        # Get 1 x n (number of examples) action index tensor under the max_q policy
        max_q_act_idxs = 'max_q_policy_actions'
        C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs])
        max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0)

        # Get 1 x n (number of examples) action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32))
        tempered_q_values = C2.Div(q_value_blob, "temperature", broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = 'softmax_act_idxs_nested'
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_blob = C2.Tile(C2.FlattenToVec(softmax_act_idxs_nested),
                                   num_examples,
                                   axis=0)

        # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]]
        # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_blob,
                                 to=caffe2_pb2.TensorProto.INT64)
        softmax_act_blob = C2.Cast(softmax_act_blob,
                                   to=caffe2_pb2.TensorProto.INT64)
        max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1])
        softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob,
                                                shape=[1, -1])
        C2.net().Append([max_q_act_blob_nested, softmax_act_blob_nested],
                        [max_q_act_blob_nested])
        transposed_action_idxs = C2.Transpose(max_q_act_blob_nested)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = 'output/int_single_categorical_features.values'
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Copy([flat_transposed_action_idxs], [output_values])

        output_lengths = 'output/int_single_categorical_features.lengths'
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill([flat_q_values_key], [output_lengths],
                              value=2,
                              dtype=caffe2_pb2.TensorProto.INT32)

        output_keys = 'output/int_single_categorical_features.keys'
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1],
                            value=0,
                            dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1],
                            value=1,
                            dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return ContinuousActionDQNPredictor(net, parameters)
Пример #9
0
 def policy(self, states, actions):
     examples = []
     for i in range(len(states)):
         examples.append({**states[i], **actions[i]})
     return RLPredictor.policy(self, examples)
    def export(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
        int_features=False,
    ):
        """ Creates a ContinuousActionDQNPredictor from a ContinuousActionDQNTrainer.

        :param trainer ContinuousActionDQNTrainer
        :param state_normalization_parameters state NormalizationParameters
        :param action_normalization_parameters action NormalizationParameters
        :param int_features boolean indicating if int features blob will be present
        """
        # ensure state and action IDs have no intersection
        assert (
            len(
                set(state_normalization_parameters.keys())
                & set(action_normalization_parameters.keys())
            )
            == 0
        )

        model = model_helper.ModelHelper(name="predictor")
        net = model.net
        C2.set_model(model)

        workspace.FeedBlob("input/float_features.lengths", np.zeros(1, dtype=np.int32))
        workspace.FeedBlob("input/float_features.keys", np.zeros(1, dtype=np.int64))
        workspace.FeedBlob("input/float_features.values", np.zeros(1, dtype=np.float32))

        input_feature_lengths = "input_feature_lengths"
        input_feature_keys = "input_feature_keys"
        input_feature_values = "input_feature_values"

        if int_features:
            workspace.FeedBlob(
                "input/int_features.lengths", np.zeros(1, dtype=np.int32)
            )
            workspace.FeedBlob("input/int_features.keys", np.zeros(1, dtype=np.int64))
            workspace.FeedBlob("input/int_features.values", np.zeros(1, dtype=np.int32))
            C2.net().Cast(
                ["input/int_features.values"],
                ["input/int_features.values_float"],
                dtype=caffe2_pb2.TensorProto.FLOAT,
            )
            C2.net().MergeMultiScalarFeatureTensors(
                [
                    "input/float_features.lengths",
                    "input/float_features.keys",
                    "input/float_features.values",
                    "input/int_features.lengths",
                    "input/int_features.keys",
                    "input/int_features.values_float",
                ],
                [input_feature_lengths, input_feature_keys, input_feature_values],
            )
        else:
            C2.net().Copy(["input/float_features.lengths"], [input_feature_lengths])
            C2.net().Copy(["input/float_features.keys"], [input_feature_keys])
            C2.net().Copy(["input/float_features.values"], [input_feature_values])

        parameters = []
        state_normalized_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            state_normalization_parameters,
            None,
        )
        parameters.extend(new_parameters)
        action_normalized_dense_matrix, new_parameters = sparse_to_dense(
            input_feature_lengths,
            input_feature_keys,
            input_feature_values,
            action_normalization_parameters,
            None,
        )
        parameters.extend(new_parameters)
        state_action_normalized = "state_action_normalized"
        state_action_normalized_dim = "state_action_normalized_dim"
        net.Concat(
            [state_normalized_dense_matrix, action_normalized_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1,
        )
        new_parameters, q_values = RLPredictor._forward_pass(
            model, trainer, state_action_normalized, ["Q"]
        )
        parameters.extend(new_parameters)

        flat_q_values_key = (
            "output/string_weighted_multi_categorical_features.values.values"
        )
        num_examples, _ = C2.Reshape(C2.Size(flat_q_values_key), shape=[1])
        q_value_blob, _ = C2.Reshape(flat_q_values_key, shape=[1, -1])

        # Get 1 x n (number of examples) action index tensor under the max_q policy
        max_q_act_idxs = "max_q_policy_actions"
        C2.net().FlattenToVec([C2.ArgMax(q_value_blob)], [max_q_act_idxs])
        max_q_act_blob = C2.Tile(max_q_act_idxs, num_examples, axis=0)

        # Get 1 x n (number of examples) action index tensor under the softmax policy
        temperature = C2.NextBlob("temperature")
        parameters.append(temperature)
        workspace.FeedBlob(
            temperature, np.array([trainer.rl_temperature], dtype=np.float32)
        )
        tempered_q_values = C2.Div(q_value_blob, temperature, broadcast=1)
        softmax_values = C2.Softmax(tempered_q_values)
        softmax_act_idxs_nested = "softmax_act_idxs_nested"
        C2.net().WeightedSample([softmax_values], [softmax_act_idxs_nested])
        softmax_act_blob = C2.Tile(
            C2.FlattenToVec(softmax_act_idxs_nested), num_examples, axis=0
        )

        # Concat action idx vecs to get 2 x n tensor [[a_maxq, ..], [a_softmax, ..]]
        # transpose & flatten to get [a_maxq, a_softmax, a_maxq, a_softmax, ...]
        max_q_act_blob = C2.Cast(max_q_act_blob, to=caffe2_pb2.TensorProto.INT64)
        softmax_act_blob = C2.Cast(softmax_act_blob, to=caffe2_pb2.TensorProto.INT64)
        max_q_act_blob_nested, _ = C2.Reshape(max_q_act_blob, shape=[1, -1])
        softmax_act_blob_nested, _ = C2.Reshape(softmax_act_blob, shape=[1, -1])
        C2.net().Append(
            [max_q_act_blob_nested, softmax_act_blob_nested], [max_q_act_blob_nested]
        )
        transposed_action_idxs = C2.Transpose(max_q_act_blob_nested)
        flat_transposed_action_idxs = C2.FlattenToVec(transposed_action_idxs)
        output_values = "output/int_single_categorical_features.values"
        workspace.FeedBlob(output_values, np.zeros(1, dtype=np.int64))
        C2.net().Copy([flat_transposed_action_idxs], [output_values])

        output_lengths = "output/int_single_categorical_features.lengths"
        workspace.FeedBlob(output_lengths, np.zeros(1, dtype=np.int32))
        C2.net().ConstantFill(
            [flat_q_values_key],
            [output_lengths],
            value=2,
            dtype=caffe2_pb2.TensorProto.INT32,
        )

        output_keys = "output/int_single_categorical_features.keys"
        workspace.FeedBlob(output_keys, np.zeros(1, dtype=np.int64))
        output_keys_tensor, _ = C2.Concat(
            C2.ConstantFill(shape=[1, 1], value=0, dtype=caffe2_pb2.TensorProto.INT64),
            C2.ConstantFill(shape=[1, 1], value=1, dtype=caffe2_pb2.TensorProto.INT64),
            axis=0,
        )
        output_key_tile = C2.Tile(output_keys_tensor, num_examples, axis=0)
        C2.net().FlattenToVec([output_key_tile], [output_keys])

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return ContinuousActionDQNPredictor(net, parameters, int_features)
    def export(
        cls,
        trainer,
        state_normalization_parameters,
        action_normalization_parameters,
    ):
        """ Creates ContinuousActionDQNPredictor from a list of action trainers

        :param trainer ContinuousActionDQNPredictor
        :param state_features list of state feature names
        :param action_features list of action feature names
        """
        # ensure state and action IDs have no intersection
        assert (
            len(
                set(state_normalization_parameters.keys()) &
                set(action_normalization_parameters.keys())
            ) == 0
        )

        model = model_helper.ModelHelper(name="predictor")
        net = model.net

        workspace.FeedBlob(
            'input/float_features.lengths', np.zeros(1, dtype=np.int32)
        )
        workspace.FeedBlob(
            'input/float_features.keys', np.zeros(1, dtype=np.int32)
        )
        workspace.FeedBlob(
            'input/float_features.values', np.zeros(1, dtype=np.float32)
        )

        preprocessor = PreprocessorNet(net, True)
        parameters = []
        parameters.extend(preprocessor.parameters)
        state_normalized_dense_matrix, new_parameters = \
            preprocessor.normalize_sparse_matrix(
                'input/float_features.lengths',
                'input/float_features.keys',
                'input/float_features.values',
                state_normalization_parameters,
                'state_norm',
            )
        parameters.extend(new_parameters)
        action_normalized_dense_matrix, new_parameters = \
            preprocessor.normalize_sparse_matrix(
                'input/float_features.lengths',
                'input/float_features.keys',
                'input/float_features.values',
                action_normalization_parameters,
                'action_norm',
            )
        parameters.extend(new_parameters)
        state_action_normalized = 'state_action_normalized'
        state_action_normalized_dim = 'state_action_normalized_dim'
        net.Concat(
            [state_normalized_dense_matrix, action_normalized_dense_matrix],
            [state_action_normalized, state_action_normalized_dim],
            axis=1
        )
        new_parameters = RLPredictor._forward_pass(
            model,
            trainer,
            state_action_normalized,
            ['Q'],
        )
        parameters.extend(new_parameters)

        workspace.RunNetOnce(model.param_init_net)
        workspace.CreateNet(net)
        return ContinuousActionDQNPredictor(net, parameters)