Пример #1
0
import numpy as np
import matplotlib.pyplot as plt

import ml

(X_train, T_train), (X_test, T_test) = ml.load_data('mnist')

ae = ml.feature.autoencoder.fit(X_train, [128, 64, 32],
                                encode_act='ReLU',
                                decode_act=['sigmoid', 'ReLU', 'ReLU'],
                                X_val=X_test,
                                eta0=0.0001,
                                optimizer='Momentum',
                                lamb=0.0001,
                                max_epoch=500,
                                patience_epoch=30)

ae.save('pkl/ae')
ml.imshow(ae(X_train[0]).flatten())
plt.pause(1)
ml.imshow(ae(X_test[0]).flatten())
plt.pause(1)
Пример #2
0
"""コマンドラインから
python3 tests/eval_mlp3d.py no_dropout
または
python3 tests/eval_mlp3d.py dropout
と実行
"""

import ml, numpy as np, sys

(X_train, T_train), (X_test, T_test) = ml.load_data()

fnames = {
    'no_dropout' : 'pkl/mlp3d.pkl',
    'dropout'    : 'pkl/mlp3d_dropout_weight_decay.pkl'
}

which = fnames[sys.argv[1]]
net = ml.load(which)

net(X_train[:10000]) 
X = net[-2].z.copy() 
labels = T_train[:10000]
 
ev_train = ml.evaluate(ml.cluster.as_cluster(X, labels))
print(ev_train)
ml.save(ev_train, f'pkl/eval_mlp3d_{sys.argv[1]}_train')

net(X_test) 
X = net[-2].z.copy() 
labels = T_test
Пример #3
0
#--------------------------------------------------------------------------------
#  Copyright (C) 2015 - 2020 Cloudspindle Inc.
#  HelloMotion.ipynb: - 'hello world' example for Deep Learning using
#                     - motion data generated from the MeKit platform.
#                     - Learn to classify clockwise and anticlockwise motions
#  License Terms:
#  Permission is hereby granted to use this software freely under the terms of
#  the free bsd license: https://www.freebsd.org/copyright/freebsd-license.html
#--------------------------------------------------------------------------------
#!git clone https://github.com/Cloudspindle/helloml.git
from ml import init,load_data,show_input_example,define_neural_net,show_input_example,define_neural_net,train_neural_net,test_neural_net
input_set_size=100
test_set_size=2
num_samples=200               # 200 samples are in the motion examples

# neural network node parameters
num_inputs=num_samples        # we make the number of neural inputs equal to the number of samples in the motion examples
num_hidden=512
num_outputs=2
training_cycles=100

init() #define global variables
(input_set,output_set,test_set)=load_data() #load the data (input training, output and test) NB - You manually #now need to load the following files in this order (ClockwiseZero_accel.200.csv, AntiClockwiseZero_accel.200.csv, ChloeClockwise_accel.200.csv, ChloeAntiClock_accel.200.csv). The first two are the training examples from which a full 100 example #training set will be built. The second two and the two examples #that will be tested after training.
show_input_example() #show an example of the data (input training v test) - rerun to #randomly select and example

net=define_neural_net(num_inputs,num_hidden,num_outputs) #define the neural network
train_neural_net(net,training_cycles) #train the neural network
test_neural_net(net) #test the neural network with the two test examples (the blue signal line is the clockwise test example and the orange signal line is the anticlockwise test example)
#!rm -rf helloml
Пример #4
0
def test_knn_and_snm(data_file):
    X, y = ml.load_data(data_file)
    return test_knn(X, y), test_svm(X, y)