Пример #1
0
def main(n_hidden: int = 256,
         dropout: float = 0.2,
         n_iter: int = 10,
         batch_size: int = 128):
    # Define the model
    model: Model = chain(
        Relu(nO=n_hidden, dropout=dropout),
        Relu(nO=n_hidden, dropout=dropout),
        Softmax(),
    )
    # Load the data
    (train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()
    # Set any missing shapes for the model.
    model.initialize(X=train_X[:5], Y=train_Y[:5])
    train_data = model.ops.multibatch(batch_size,
                                      train_X,
                                      train_Y,
                                      shuffle=True)
    dev_data = model.ops.multibatch(batch_size, dev_X, dev_Y)
    # Create the optimizer.
    optimizer = Adam(0.001)
    for i in range(n_iter):
        for X, Y in tqdm(train_data, leave=False):
            Yh, backprop = model.begin_update(X)
            backprop(Yh - Y)
            model.finish_update(optimizer)
        # Evaluate and print progress
        correct = 0
        total = 0
        for X, Y in dev_data:
            Yh = model.predict(X)
            correct += (Yh.argmax(axis=1) == Y.argmax(axis=1)).sum()
            total += Yh.shape[0]
        score = correct / total
        msg.row((i, f"{score:.3f}"), widths=(3, 5))
Пример #2
0
def test_with_debug():
    pytest.importorskip("ml_datasets")
    import ml_datasets

    (train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()

    counts = Counter()

    def on_init(*_):
        counts["init"] += 1

    def on_forward(*_):
        counts["forward"] += 1

    def on_backprop(*_):
        counts["backprop"] += 1

    relu = Relu()
    relu2 = with_debug(Relu(),
                       on_init=on_init,
                       on_forward=on_forward,
                       on_backprop=on_backprop)
    chained = chain(relu, relu2, relu2)
    chained.initialize(X=train_X[:5], Y=train_Y[:5])
    _, backprop = chained(X=train_X[:5], is_train=False)

    # Not real loss gradients, but we don't care for testing.
    backprop(train_Y[:5])

    # Four times forward, because initialization also applies forward for
    # validation.
    assert counts == {"init": 2, "forward": 4, "backprop": 2}
Пример #3
0
def test_model_gpu():
    prefer_gpu()
    n_hidden = 32
    dropout = 0.2
    (train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()
    model = chain(
        Relu(nO=n_hidden, dropout=dropout),
        Relu(nO=n_hidden, dropout=dropout),
        Softmax(),
    )
    # making sure the data is on the right device
    train_X = model.ops.asarray(train_X)
    train_Y = model.ops.asarray(train_Y)
    dev_X = model.ops.asarray(dev_X)
    dev_Y = model.ops.asarray(dev_Y)

    model.initialize(X=train_X[:5], Y=train_Y[:5])
    optimizer = Adam(0.001)
    batch_size = 128

    for i in range(2):
        batches = model.ops.multibatch(batch_size, train_X, train_Y, shuffle=True)
        for X, Y in batches:
            Yh, backprop = model.begin_update(X)
            backprop(Yh - Y)
            model.finish_update(optimizer)
        # Evaluate and print progress
        correct = 0
        total = 0
        for X, Y in model.ops.multibatch(batch_size, dev_X, dev_Y):
            Yh = model.predict(X)
            correct += (Yh.argmax(axis=1) == Y.argmax(axis=1)).sum()
            total += Yh.shape[0]
Пример #4
0
def mnist(limit=5000):
    (train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()
    return (train_X[:limit], train_Y[:limit]), (dev_X[:limit], dev_Y[:limit])
Пример #5
0
import numpy as np
from _8_mnist_sinkprop import DigitCNN
import ml_datasets
from tqdm import tqdm

trX, trY, teX, teY = ml_datasets.mnist(onehot=True)

Q = np.random.permutation(np.eye(784))

##########################################
#   Permute the columns of the train and test matrices
##########################################

trX = np.dot(trX, Q)
teX = np.dot(teX, Q)

#trX = trX.reshape((-1, 1, 28, 28))
#teX = teX.reshape((-1, 1, 28, 28))


cnn = DigitCNN()

def train(iters=1, eta=.1, perm_eta=.1):

    for i in xrange(iters):
        for start, end in tqdm(zip(range(0, len(trX), 128), range(128, len(trX), 128))):
            cost = cnn.train(trX[start:end], trY[start:end], eta=eta, perm_eta=perm_eta)

        test_error = 1 - np.mean(np.argmax(teY, axis=1) == cnn.predict(teX))
        train_error = 1- np.mean(np.argmax(trY[:10000], axis=1) == cnn.predict(trX[:10000]))
        print ("test error: %s, train error %s" % (test_error, train_error))
Пример #6
0
import numpy as np
from _2_mnist_cnn import DigitCNN
import ml_datasets
from tqdm import tqdm

trX, trY, teX, teY = ml_datasets.mnist(onehot=True)
trX = trX.reshape((-1, 1, 28, 28))
teX = teX.reshape((-1, 1, 28, 28))


cnn = DigitCNN()

def train(iters=1, eta=.1):

    for i in xrange(iters):
        for start, end in tqdm(zip(range(0, len(trX), 128), range(128, len(trX), 128))):
            cost = cnn.train(trX[start:end], trY[start:end], eta=eta)

        test_error = 1 - np.mean(np.argmax(teY, axis=1) == cnn.predict(teX))
        train_error = 1- np.mean(np.argmax(trY[:10000], axis=1) == cnn.predict(trX[:10000]))
        print ("test error: %s, train error %s" % (test_error, train_error))
recon_error = T.mean((Yhat - Y) ** 2) 

cost        = recon_error + penalty 

params      = [W]
updates     = SGD(cost, params, learning_rate)

train_func  = theano.function(inputs=[X,Y, row_penalty, col_penalty, learning_rate], outputs=[recon_error, penalty, cost], updates=updates)




########################################
#  Code to run experiment
########################################
Xtrain, Ytrain, Xtest, Ytest = ml_datasets.mnist()
def train(iters=1, row_penalty=0.0, col_penalty=0.0, eta=.1):
    for i in xrange(iters):
        for start, end in tqdm(zip(range(0, len(Xtrain), 128), range(128, len(Xtrain), 128))):
            recon_error, penalty, cost = train_func(Xtrain[start:end], Xtrain[start:end], row_penalty, col_penalty, eta)
            print ("Recon: %s, Penalty: %s, Cost: %s" % (recon_error, penalty, cost))
               
              
               






Пример #8
0
import thinc.api as api

import cowsay
import ml_datasets

# configure
config = api.Config()
config.from_disk('./linear.cfg')
loaded_config = api.registry.make_from_config(config)
batch_size = loaded_config['training']['batch_size']
n_iter = loaded_config['training']['n_iter']

# dataset
(train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()
cowsay.cow(f"Training size={len(train_X)}, dev size={len(dev_X)}")

# model
model = api.Softmax()
model.initialize(X=train_X, Y=train_Y)
cowsay.cow(
    f"Initialized model with input dimension "
    f"nI={model.get_dim('nI')} and output dimension nO={model.get_dim('nO')}")

api.fix_random_seed(0)
optimizer = loaded_config['optimizer']
print("Training")
for _ in range(n_iter):
    for X, Y in model.ops.multibatch(batch_size,
                                     train_X,
                                     train_Y,
                                     shuffle=True):
Пример #9
0
def mnist(limit=5000):
    pytest.importorskip("ml_datasets")
    import ml_datasets
    (train_X, train_Y), (dev_X, dev_Y) = ml_datasets.mnist()
    return (train_X[:limit], train_Y[:limit]), (dev_X[:limit], dev_Y[:limit])
Пример #10
0
penalty = row_penalty * row_norm + col_penalty * col_norm
recon_error = T.mean((Yhat - Y)**2)

cost = recon_error + penalty

params = [W]
updates = SGD(cost, params, learning_rate)

train_func = theano.function(
    inputs=[X, Y, row_penalty, col_penalty, learning_rate],
    outputs=[recon_error, penalty, cost],
    updates=updates)

########################################
#  Code to run experiment
########################################
Xtrain, Ytrain, Xtest, Ytest = ml_datasets.mnist()


def train(iters=1, row_penalty=0.0, col_penalty=0.0, eta=.1):
    for i in xrange(iters):
        for start, end in tqdm(
                zip(range(0, len(Xtrain), 128), range(128, len(Xtrain), 128))):
            recon_error, penalty, cost = train_func(Xtrain[start:end],
                                                    Xtrain[start:end],
                                                    row_penalty, col_penalty,
                                                    eta)
            print("Recon: %s, Penalty: %s, Cost: %s" %
                  (recon_error, penalty, cost))