def test_measure(self):
        params = attention_allocation.Params()
        params.incident_rates = [4.0, 2.0]
        params.attention_replacement = True
        env = attention_allocation.LocationAllocationEnv(params)
        env = attention_allocation.LocationAllocationEnv(params)
        env.seed(100)
        agent = random_agents.RandomAgent(env.action_space, None,
                                          env.observation_space)

        agent.seed(100)
        observation = env.reset()
        done = False
        for _ in range(250):
            action = agent.act(observation, done)
            observation, _, done, _ = env.step(action)

        metric = distribution_comparison_metrics.DistributionComparisonMetric(
            env, "incidents_seen", 250)
        state_dist, action_dist, distance = metric.measure(env)

        expected_state_dist = env.state.params.incident_rates / np.sum(
            env.state.params.incident_rates)
        # Expected action distribution is uniform because RandomAgent is random.
        expected_action_dist = [0.5, 0.5]
        expected_distance = np.linalg.norm(expected_state_dist -
                                           expected_action_dist)

        self.assertTrue(
            np.all(np.isclose(state_dist, expected_state_dist, atol=0.05)))
        self.assertTrue(
            np.all(np.isclose(action_dist, expected_action_dist, atol=0.05)))
        self.assertTrue(np.isclose(distance, expected_distance, atol=0.1))
Пример #2
0
    def test_MLE_rate_estimation(self):
        env_params = attention_allocation.Params()
        env_params.prior_incident_counts = (500, 500)
        env_params.n_attention_units = 5

        # pylint: disable=g-long-lambda
        agent_params = allocation_agents.MLEProbabilityMatchingAgentParams()

        agent_params.feature_selection_fn = lambda obs: allocation_agents._get_added_vector_features(
            obs, env_params.n_locations, keys=["incidents_seen"]
        )
        agent_params.interval = 200
        agent_params.epsilon = 0

        env = attention_allocation.LocationAllocationEnv(env_params)
        agent = allocation_agents.MLEProbabilityMatchingAgent(
            action_space=env.action_space,
            reward_fn=lambda x: None,
            observation_space=env.observation_space,
            params=agent_params,
        )
        seed = 0
        agent.rng.seed(seed)
        env.seed(seed)
        observation = env.reset()
        done = False
        steps = 200
        for _ in range(steps):
            action = agent.act(observation, done)
            observation, _, done, _ = env.step(action)

        self.assertTrue(
            np.all(np.isclose(list(agent.beliefs), list(env_params.incident_rates), atol=0.5))
        )
Пример #3
0
 def test_episode_done_raises_error(self):
     env = attention_allocation.LocationAllocationEnv()
     agent = allocation_agents.NaiveProbabilityMatchingAgent(
         action_space=env.action_space, observation_space=env.observation_space, reward_fn=None
     )
     observation = env.reset()
     with self.assertRaises(core.EpisodeDoneError):
         agent.act(observation, done=True)
Пример #4
0
 def test_can_interact_with_attention_env(self):
     env = attention_allocation.LocationAllocationEnv()
     agent = allocation_agents.MLEProbabilityMatchingAgent(
         action_space=env.action_space,
         observation_space=env.observation_space,
         reward_fn=None,
         params=None,
     )
     test_util.run_test_simulation(env=env, agent=agent)
 def test_dynamic_rate_change(self):
     params = attention_allocation.Params()
     params.dynamic_rate = 0.1
     params.incident_rates = [4.0, 2.0]
     params.n_attention_units = 2
     env = attention_allocation.LocationAllocationEnv(params=params)
     env.seed(0)
     env.step(action=np.array([2, 0]))
     new_rates = env.state.params.incident_rates
     expected_rates = [3.8, 2.1]
     self.assertEqual(expected_rates, new_rates)
Пример #6
0
 def test__allocate_by_counts(self):
     """Check allocation proportions match probabilities from counts."""
     env = attention_allocation.LocationAllocationEnv()
     agent = allocation_agents.NaiveProbabilityMatchingAgent(
         action_space=env.action_space, observation_space=env.observation_space, reward_fn=None
     )
     counts = [3, 6, 8]
     n_resource = 20
     n_samples = 100
     samples = [agent._allocate(n_resource, counts) for _ in range(n_samples)]
     counts_normalized = [(count / float(np.sum(counts))) for count in counts]
     samples_normalized = [(count / float(np.sum(samples))) for count in np.sum(samples, axis=0)]
     self.assertTrue(np.all(np.isclose(counts_normalized, samples_normalized, atol=0.05)))
Пример #7
0
 def test_allocate_by_counts_zero(self):
     """Check allocations are even when counts are zero."""
     env = attention_allocation.LocationAllocationEnv()
     agent = allocation_agents.NaiveProbabilityMatchingAgent(
         action_space=env.action_space, observation_space=env.observation_space, reward_fn=None
     )
     counts = [0, 0, 0]
     n_resource = 15
     n_samples = 100
     samples = [agent._allocate(n_resource, counts) for _ in range(n_samples)]
     mean_samples = np.sum(samples, axis=0) / float(n_samples)
     expected_mean = n_resource / float(len(counts))
     std_dev = np.std(samples)
     means_close = [np.abs(mean - expected_mean) < std_dev for mean in mean_samples]
     self.assertTrue(np.all(means_close))
Пример #8
0
 def test_update_counts(self):
     """Check that counts are updated correctly given an observation."""
     env = attention_allocation.LocationAllocationEnv()
     agent_params = allocation_agents.NaiveProbabilityMatchingAgentParams()
     agent_params.decay_prob = 0
     agent = allocation_agents.NaiveProbabilityMatchingAgent(
         action_space=env.action_space,
         observation_space=env.observation_space,
         reward_fn=None,
         params=agent_params,
     )
     counts = [3, 6, 8]
     observation = np.array([1, 2, 0])
     updated_counts = agent._update_beliefs(observation, counts)
     self.assertTrue(np.all(np.equal(updated_counts, [4, 8, 8])))
Пример #9
0
 def test_allocate_beliefs_greedy(self):
     env_params = attention_allocation.Params(
         n_locations=4,
         prior_incident_counts=(10, 10, 10, 10),
         n_attention_units=5,
         incident_rates=[0, 0, 0, 0],
     )
     env = attention_allocation.LocationAllocationEnv(params=env_params)
     agent_params = allocation_agents.MLEGreedyAgentParams(epsilon=0.0)
     agent = allocation_agents.MLEGreedyAgent(
         action_space=env.action_space,
         observation_space=env.observation_space,
         reward_fn=rewards.VectorSumReward("incidents_seen"),
         params=agent_params,
     )
     allocation = agent._allocate(5, [5, 2, 1, 1])
     self.assertTrue(np.all(np.equal(allocation, [4, 1, 0, 0])))
Пример #10
0
 def test_allocate_beliefs_fair_unsatisfiable(self):
     env_params = attention_allocation.Params(
         n_locations=4,
         prior_incident_counts=(10, 10, 10, 10),
         n_attention_units=5,
         incident_rates=[0, 0, 0, 0],
     )
     env = attention_allocation.LocationAllocationEnv(params=env_params)
     agent_params = allocation_agents.MLEGreedyAgentParams(epsilon=0.0, alpha=0.25)
     agent = allocation_agents.MLEGreedyAgent(
         action_space=env.action_space,
         observation_space=env.observation_space,
         reward_fn=rewards.VectorSumReward("incidents_seen"),
         params=agent_params,
     )
     with self.assertRaises(gym.error.InvalidAction):
         agent._allocate(5, [5, 2, 1, 1])
Пример #11
0
    def test_metric_multiple(self):
        env = attention_allocation.LocationAllocationEnv()
        agent = random_agents.RandomAgent(env.action_space, None,
                                          env.observation_space)

        env.seed(100)
        observation = env.reset()
        done = False

        for _ in range(2):
            action = agent.act(observation, done)
            observation, _, done, _ = env.step(action)

        metric1 = core.Metric(env)
        metric2 = core.Metric(env)

        history1 = metric1._extract_history(env)
        history2 = metric2._extract_history(env)
        self.assertEqual(history1, history2)
    def test_update_state(self):
        """Check that state is correctly updated with incidents_seen.

    This tests checks that numbers of incidents_seen are no more than the
    incidents  generated and the attention deployed as specified in the action,
    if allocating without attention replacement.
    """
        env = attention_allocation.LocationAllocationEnv()
        env.seed(0)
        agent = random_agents.RandomAgent(env.action_space, None, env.observation_space)
        observation = env.reset()
        action = agent.act(observation, False)
        crimes, reported_incidents = attention_allocation._sample_incidents(
            env.state.rng, env.state.params
        )
        attention_allocation._update_state(env.state, crimes, reported_incidents, action)
        incidents_seen = env.state.incidents_seen
        self.assertTrue((incidents_seen <= crimes).all())
        if not env.state.params.attention_replacement:
            self.assertTrue((incidents_seen <= action).all())
 def test_parties_can_interact(self):
     test_util.run_test_simulation(env=attention_allocation.LocationAllocationEnv())
Пример #14
0
 def test_can_interact_with_attention_env(self):
     env = attention_allocation.LocationAllocationEnv()
     agent = allocation_agents.MLEGreedyAgent(
         action_space=env.action_space, observation_space=env.observation_space, reward_fn=None
     )
     test_util.run_test_simulation(env=env, agent=agent)