""" # | - get_data_for_al sys.path.insert(0, os.path.join(os.environ["PROJ_irox"], "data")) from proj_data_irox import (ids_to_discard__too_many_atoms_path) # | - Get all necessary dfs df_dict = get_ml_dataframes( names=[ "bulk_dft_data_path", "unique_ids_path", # "prototypes_data_path", "static_irox_structures_path", # "static_irox_structures_kirsten_path", # "oqmd_irox_data_path", "df_features_pre_opt_path", "df_features_pre_opt_kirsten_path", "df_features_post_opt_path", # "oer_bulk_structures_path", # "df_ccf_path", "df_dij_path", # "ids_to_discard__too_many_atoms_path", ], ) df_ids = df_dict.get("unique_ids", None) df_bulk_dft = df_dict.get("bulk_dft_data", None) df_bulk_dft = df_bulk_dft[df_bulk_dft.source == "raul"] df_features_pre = df_dict.get("df_features_pre_opt", None) # df_features_pre = df_dict.get("df_features_pre_opt_kirsten", None) df_features_post = df_dict.get("df_features_post_opt", None)
# # Import Data # + with open(AL_data_path, "rb") as fle: AL_i = pickle.load(fle) # ######################################################### DF_dict = get_ml_dataframes(names=[ 'bulk_dft_data_path', 'unique_ids_path', 'prototypes_data_path', 'static_irox_structures_path', 'static_irox_structures_kirsten_path', 'oqmd_irox_data_path', 'df_features_pre_opt_path', 'df_features_pre_opt_kirsten_path', 'df_features_post_opt_path', 'oer_bulk_structures_path', 'df_ccf_path', 'df_dij_path', 'ids_to_discard__too_many_atoms_path', 'df_prototype_dft_path', 'df_prototype_static_path', ]) df_bulk_dft = DF_dict["bulk_dft_data"] # unique_ids = DF_dict["unique_ids"] # prototypes_data = DF_dict["prototypes_data"] # static_irox_structures = DF_dict["static_irox_structures"] # static_irox_structures_kirsten = DF_dict["static_irox_structures_kirsten"] # oqmd_irox_data = DF_dict["oqmd_irox_data"]
# '949rnem5z2', # 'mkmsvkcyc5', # 'vwxfn3blxi', # 'nrml6dms9l', # ]] # + # %%capture sys.path.insert(0, os.path.join(os.environ["PROJ_irox"], "workflow/ml_modelling")) from ml_methods import get_ml_dataframes DF_dict = get_ml_dataframes(names=[ 'static_irox_structures_path', 'df_prototype_dft_path', 'df_prototype_static_path', ]) df_prototype_static = DF_dict["df_prototype_static"] df_prototype_dft = DF_dict["df_prototype_dft"] static_irox_structures = DF_dict['static_irox_structures'] # - # ######################################################### import pickle import os path_i = os.path.join( os.environ["PROJ_irox"], "CatHub_MPContribs_upload/MPContribs_upload/duplicate_MP_entries",
# + import os print(os.getcwd()) import sys import pandas as pd # + sys.path.insert(0, os.path.join(os.environ["PROJ_irox"], "workflow/ml_modelling")) from ml_methods import get_ml_dataframes # + DF_dict = get_ml_dataframes() bulk_dft_data = DF_dict['bulk_dft_data'] unique_ids = DF_dict['unique_ids'] prototypes_data = DF_dict['prototypes_data'] static_irox_structures = DF_dict['static_irox_structures'] static_irox_structures_kirsten = DF_dict['static_irox_structures_kirsten'] oqmd_irox_data = DF_dict['oqmd_irox_data'] df_features_pre_opt = DF_dict['df_features_pre_opt'] df_features_pre_opt_kirsten = DF_dict['df_features_pre_opt_kirsten'] df_features_post_opt = DF_dict['df_features_post_opt'] oer_bulk_structures = DF_dict['oer_bulk_structures'] df_ccf = DF_dict['df_ccf'] df_dij = DF_dict['df_dij'] ids_to_discard__too_many_atoms = DF_dict['ids_to_discard__too_many_atoms']
from ase.db import connect # - # # Script Inputs filename = "FinalStructures_1.db" # # Read df_bulk_dft dataframe # + sys.path.insert(0, os.path.join(os.environ["PROJ_irox"], "workflow/ml_modelling")) from ml_methods import get_ml_dataframes DF_dict = get_ml_dataframes(names=[ "df_dft_final_final_path", # "", ]) df_bulk_dft = DF_dict["df_dft_final_final"] df_i = df_bulk_dft # + # df_i = df_i.loc[[ # 'vovgximhm2', # '8dce6kz2vf', # 'vhv39q6e9j', # '8ymh8qnl6o', # '6fcdbh9fz2', # '7qm56wxj8s', # 'mu6omk6k9l',