Пример #1
0
    def test_make_dir_fails_on_input_files(self, tmp_path: pathlib.Path):
        file_path = tmp_path / "test.txt"

        file_path.write_text("test\ntest")

        with pytest.raises(IOError):
            make_dir(file_path)
Пример #2
0
    def test_make_dir_creates_folder_on_input_files(self,
                                                    tmp_path: pathlib.Path):
        file_path = tmp_path / "testing"
        assert file_path.exists() is False

        make_dir(file_path)

        assert file_path.exists()
Пример #3
0
    def _generate_output_path(self, save_dir: pathlib.Path) -> pathlib.Path:
        """
        Generates a valid filename, appending an incrementing counter if
        file with same name already exists

        Parameters
        ----------
        save_dir: pathlib.Path
            Directory where logs are to be saved

        Returns
        -------
        pathlib.Path
            Path to output_file

        """
        save_dir = make_dir(save_dir)
        now = datetime.now()
        iteration = 0
        output_file = f'{self.name}_{now.strftime("%H%M%S")}_{iteration}.yaml'
        output_path = save_dir.joinpath(output_file)

        while output_path.exists():
            output_file = f'{self.name}_{now.strftime("%H%M%S")}_{iteration}.yaml'
            output_path = save_dir.joinpath(output_file)
            iteration += 1

        return output_path
Пример #4
0
    def save(self,
             estimator: Estimator,
             filename: str,
             prod: bool = False) -> "ArtifactoryPath":
        """
        Save a pickled estimator to artifactory.

        Parameters
        ----------
        estimator: Estimator
            The estimator object
        filename: str
            filename of estimator pickle file
        prod: bool
            Production variable, set to True if saving a production-ready estimator

        Example
        -------
        To save your trained estimator:

            storage = ArtifactoryStorage('http://artifactory.com', 'path/to/repo')
            artifactory_path = storage.save(estimator, 'estimator.pkl')

        We now have saved an estimator to a pickle file.

        Returns
        -------
        ArtifactoryPath
            File path to stored estimator
        """

        if prod:
            raise NotImplementedError(
                "Artifactory Storage doesn't currently implement production storage. "
                "Use FileStorage instead")

        artifactory_path = make_dir(self.artifactory_path) / filename

        with TemporaryDirectory() as tmpdir:
            file_path = Path(tmpdir).joinpath(filename)
            joblib.dump(estimator, file_path)
            artifactory_path.deploy_file(file_path)
        return artifactory_path
Пример #5
0
    def save(self,
             estimator: Estimator,
             filename: str,
             prod: bool = False) -> Path:
        """
        Save a joblib pickled estimator.

        Parameters
        ----------
        estimator: obj
            The estimator object

        filename: str
            filename of estimator pickle file

        prod: bool
            Whether or not to save in "production mode" -
            Production mode saves to /src/<projectname>/ regardless
            of what FileStorage was instantiated with

        Example
        -------
        To save your trained estimator, use the FileStorage context manager.

            storage = FileStorage('/path/to/save/dir/')
            file_path = storage.save(estimator, 'filename')

        We now have saved an estimator to a pickle file.

        Returns
        -------
        Path
            Path to the saved object
        """

        if prod:
            file_path = _find_src_dir() / filename
        else:
            file_path = make_dir(self.dir_path) / filename

        joblib.dump(estimator, file_path)
        return file_path