def classification(): # Generate a random binary classification problem. X, y = make_classification(n_samples=1000, n_features=100, n_informative=75, random_state=1111, n_classes=2, class_sep=2.5, ) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=1111) model = LogisticRegression(lr=0.01, max_iters=500, penalty='l1', C=0.01) model.fit(X_train, y_train) predictions = model.predict(X_test) print('classification accuracy', accuracy(y_test, predictions))
def classification(): X, y = make_classification( n_samples=1000, n_features=100, n_informative=75, random_state=1111, n_classes=2, class_sep=2.5, ) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=1111) model = LogisticRegression(lr=0.01, max_iters=500, penalty='l1', C=0.01) model.fit(X_train, y_train) predictions = model.predict(X_test) print('classification accuracy', accuracy(y_test, predictions))
def classification(): # Generate a random binary classification problem. X, y = make_classification(n_samples=1000, n_features=100, n_informative=75, random_state=1111, n_classes=2, class_sep=2.5) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=1111) model = LogisticRegression(lr=0.01, max_iters=500, penalty="l1", C=0.01) model.fit(X_train, y_train) predictions = model.predict(X_test) print("classification accuracy", accuracy(y_test, predictions))
except ImportError: from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification from mla.linear_models import LogisticRegression from mla.metrics import accuracy from mla.pca import PCA # logging.basicConfig(level=logging.DEBUG) # Generate a random binary classification problem. X, y = make_classification(n_samples=1000, n_features=100, n_informative=75, random_state=1111, n_classes=2, class_sep=2.5, ) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1111) for s in ['svd', 'eigen']: p = PCA(15, solver=s) # fit PCA with training data, not entire dataset p.fit(X_train) X_train_reduced = p.transform(X_train) X_test_reduced = p.transform(X_test) model = LogisticRegression(lr=0.001, max_iters=2500) model.fit(X_train_reduced, y_train) predictions = model.predict(X_test_reduced) print('Classification accuracy for %s PCA: %s' % (s, accuracy(y_test, predictions)))
def test_linear_model_classification(): model = LogisticRegression(lr=0.01, max_iters=500, penalty='l1', C=0.01) model.fit(X_train, y_train) predictions = model.predict(X_test) assert roc_auc_score(y_test, predictions) >= 0.95
def test_linear_model(): model = LogisticRegression(lr=0.01, max_iters=500, penalty='l1', C=0.01) model.fit(X_train, y_train) predictions = model.predict(X_test) assert roc_auc_score(y_test, predictions) >= 0.95
from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification from mla.linear_models import LogisticRegression from mla.metrics import accuracy from mla.pca import PCA # logging.basicConfig(level=logging.DEBUG) # Generate a random binary classification problem. X, y = make_classification(n_samples=1000, n_features=100, n_informative=75, random_state=1111, n_classes=2, class_sep=2.5, ) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1111) for s in ['svd', 'eigen']: p = PCA(15, solver=s) # fit PCA with training data, not entire dataset p.fit(X_train) X_train_reduced = p.transform(X_train) X_test_reduced = p.transform(X_test) model = LogisticRegression(lr=0.001, max_iters=2500) model.fit(X_train_reduced, y_train) predictions = model.predict(X_test_reduced) print('Classification accuracy for %s PCA: %s' % (s, accuracy(y_test, predictions)))