Пример #1
0
    def __init__(self, brain, trainer_parameters, training, load, seed,
                 run_id):
        """
        Responsible for collecting experiences and training PPO model.
        :param  trainer_parameters: The parameters for the trainer (dictionary).
        :param training: Whether the trainer is set for training.
        :param load: Whether the model should be loaded.
        :param seed: The seed the model will be initialized with
        :param run_id: The identifier of the current run
        """
        super(BCTrainer, self).__init__(brain, trainer_parameters, training,
                                        run_id)
        self.policy = BCPolicy(seed, brain, trainer_parameters, load)
        self.n_sequences = 1
        self.cumulative_rewards = {}
        self.episode_steps = {}
        self.stats = {
            "Losses/Cloning Loss": [],
            "Environment/Episode Length": [],
            "Environment/Cumulative Reward": [],
        }

        self.batches_per_epoch = trainer_parameters["batches_per_epoch"]

        self.demonstration_buffer = AgentBuffer()
        self.evaluation_buffer = ProcessingBuffer()
Пример #2
0
def create_buffer(brain_infos, brain_params, sequence_length, memory_size=8):
    buffer = ProcessingBuffer()
    update_buffer = AgentBuffer()
    # Make a buffer
    for idx, experience in enumerate(brain_infos):
        if idx > len(brain_infos) - 2:
            break
        current_brain_info = brain_infos[idx]
        next_brain_info = brain_infos[idx + 1]
        buffer[0].last_brain_info = current_brain_info
        buffer[0]["done"].append(next_brain_info.local_done[0])
        buffer[0]["rewards"].append(next_brain_info.rewards[0])
        for i in range(brain_params.number_visual_observations):
            buffer[0]["visual_obs%d" % i].append(
                current_brain_info.visual_observations[i][0]
            )
            buffer[0]["next_visual_obs%d" % i].append(
                current_brain_info.visual_observations[i][0]
            )
        if brain_params.vector_observation_space_size > 0:
            buffer[0]["vector_obs"].append(current_brain_info.vector_observations[0])
            buffer[0]["next_vector_in"].append(
                current_brain_info.vector_observations[0]
            )
        fake_action_size = len(brain_params.vector_action_space_size)
        if brain_params.vector_action_space_type == "continuous":
            fake_action_size = brain_params.vector_action_space_size[0]
        buffer[0]["actions"].append(np.zeros(fake_action_size, dtype=np.float32))
        buffer[0]["prev_action"].append(np.zeros(fake_action_size, dtype=np.float32))
        buffer[0]["masks"].append(1.0)
        buffer[0]["advantages"].append(1.0)
        if brain_params.vector_action_space_type == "discrete":
            buffer[0]["action_probs"].append(
                np.ones(sum(brain_params.vector_action_space_size), dtype=np.float32)
            )
        else:
            buffer[0]["action_probs"].append(
                np.ones(buffer[0]["actions"][0].shape, dtype=np.float32)
            )
        buffer[0]["actions_pre"].append(
            np.ones(buffer[0]["actions"][0].shape, dtype=np.float32)
        )
        buffer[0]["action_mask"].append(
            np.ones(np.sum(brain_params.vector_action_space_size), dtype=np.float32)
        )
        buffer[0]["memory"].append(np.ones(memory_size, dtype=np.float32))

    buffer.append_to_update_buffer(
        update_buffer, 0, batch_size=None, training_length=sequence_length
    )
    return update_buffer
Пример #3
0
 def __init__(self, *args, **kwargs):
     super(RLTrainer, self).__init__(*args, **kwargs)
     # Make sure we have at least one reward_signal
     if not self.trainer_parameters["reward_signals"]:
         raise UnityTrainerException(
             "No reward signals were defined. At least one must be used with {}."
             .format(self.__class__.__name__))
     # collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward
     # used for reporting only. We always want to report the environment reward to Tensorboard, regardless
     # of what reward signals are actually present.
     self.collected_rewards = {"environment": {}}
     self.processing_buffer = ProcessingBuffer()
     self.update_buffer = AgentBuffer()
     self.episode_steps = {}
Пример #4
0
def construct_fake_processing_buffer():
    b = ProcessingBuffer()
    for fake_agent_id in range(4):
        for step in range(9):
            b[fake_agent_id]["vector_observation"].append([
                100 * fake_agent_id + 10 * step + 1,
                100 * fake_agent_id + 10 * step + 2,
                100 * fake_agent_id + 10 * step + 3,
            ])
            b[fake_agent_id]["action"].append([
                100 * fake_agent_id + 10 * step + 4,
                100 * fake_agent_id + 10 * step + 5,
            ])
    return b
Пример #5
0
def make_demo_buffer(
    pair_infos: List[AgentInfoActionPairProto],
    brain_params: BrainParameters,
    sequence_length: int,
) -> AgentBuffer:
    # Create and populate buffer using experiences
    demo_process_buffer = ProcessingBuffer()
    demo_buffer = AgentBuffer()
    for idx, experience in enumerate(pair_infos):
        if idx > len(pair_infos) - 2:
            break
        current_pair_info = pair_infos[idx]
        next_pair_info = pair_infos[idx + 1]
        current_brain_info = BrainInfo.from_agent_proto(
            0, [current_pair_info.agent_info], brain_params)
        next_brain_info = BrainInfo.from_agent_proto(
            0, [next_pair_info.agent_info], brain_params)
        previous_action = (np.array(pair_infos[idx].action_info.vector_actions,
                                    dtype=np.float32) * 0)
        if idx > 0:
            previous_action = np.array(
                pair_infos[idx - 1].action_info.vector_actions,
                dtype=np.float32)
        demo_process_buffer[0].last_brain_info = current_brain_info
        demo_process_buffer[0]["done"].append(next_brain_info.local_done[0])
        demo_process_buffer[0]["rewards"].append(next_brain_info.rewards[0])
        for i in range(brain_params.number_visual_observations):
            demo_process_buffer[0]["visual_obs%d" % i].append(
                current_brain_info.visual_observations[i][0])
        if brain_params.vector_observation_space_size > 0:
            demo_process_buffer[0]["vector_obs"].append(
                current_brain_info.vector_observations[0])
        demo_process_buffer[0]["actions"].append(
            current_pair_info.action_info.vector_actions)
        demo_process_buffer[0]["prev_action"].append(previous_action)
        if next_brain_info.local_done[0]:
            demo_process_buffer.append_to_update_buffer(
                demo_buffer,
                0,
                batch_size=None,
                training_length=sequence_length)
            demo_process_buffer.reset_local_buffers()
    demo_process_buffer.append_to_update_buffer(
        demo_buffer, 0, batch_size=None, training_length=sequence_length)
    return demo_buffer
Пример #6
0
class BCTrainer(Trainer):
    """The BCTrainer is an implementation of Behavioral Cloning."""
    def __init__(self, brain, trainer_parameters, training, load, seed,
                 run_id):
        """
        Responsible for collecting experiences and training PPO model.
        :param  trainer_parameters: The parameters for the trainer (dictionary).
        :param training: Whether the trainer is set for training.
        :param load: Whether the model should be loaded.
        :param seed: The seed the model will be initialized with
        :param run_id: The identifier of the current run
        """
        super(BCTrainer, self).__init__(brain, trainer_parameters, training,
                                        run_id)
        self.policy = BCPolicy(seed, brain, trainer_parameters, load)
        self.n_sequences = 1
        self.cumulative_rewards = {}
        self.episode_steps = {}
        self.stats = {
            "Losses/Cloning Loss": [],
            "Environment/Episode Length": [],
            "Environment/Cumulative Reward": [],
        }

        self.batches_per_epoch = trainer_parameters["batches_per_epoch"]

        self.demonstration_buffer = AgentBuffer()
        self.evaluation_buffer = ProcessingBuffer()

    def add_experiences(
        self,
        curr_info: BrainInfo,
        next_info: BrainInfo,
        take_action_outputs: ActionInfoOutputs,
    ) -> None:
        """
        Adds experiences to each agent's experience history.
        :param curr_info: Current BrainInfo
        :param next_info: Next BrainInfo
        :param take_action_outputs: The outputs of the take action method.
        """

        # Used to collect information about student performance.
        for agent_id in curr_info.agents:
            self.evaluation_buffer[agent_id].last_brain_info = curr_info

        for agent_id in next_info.agents:
            stored_next_info = self.evaluation_buffer[agent_id].last_brain_info
            if stored_next_info is None:
                continue
            else:
                next_idx = next_info.agents.index(agent_id)
                if agent_id not in self.cumulative_rewards:
                    self.cumulative_rewards[agent_id] = 0
                self.cumulative_rewards[agent_id] += next_info.rewards[
                    next_idx]
                if not next_info.local_done[next_idx]:
                    if agent_id not in self.episode_steps:
                        self.episode_steps[agent_id] = 0
                    self.episode_steps[agent_id] += 1

    def process_experiences(self, current_info: BrainInfo,
                            next_info: BrainInfo) -> None:
        """
        Checks agent histories for processing condition, and processes them as necessary.
        Processing involves calculating value and advantage targets for model updating step.
        :param current_info: Current BrainInfo
        :param next_info: Next BrainInfo
        """
        for l in range(len(next_info.agents)):
            if next_info.local_done[l]:
                agent_id = next_info.agents[l]
                self.stats["Environment/Cumulative Reward"].append(
                    self.cumulative_rewards.get(agent_id, 0))
                self.stats["Environment/Episode Length"].append(
                    self.episode_steps.get(agent_id, 0))
                self.reward_buffer.appendleft(
                    self.cumulative_rewards.get(agent_id, 0))
                self.cumulative_rewards[agent_id] = 0
                self.episode_steps[agent_id] = 0

    def end_episode(self):
        """
        A signal that the Episode has ended. The buffer must be reset.
        Get only called when the academy resets.
        """
        self.evaluation_buffer.reset_local_buffers()
        for agent_id in self.cumulative_rewards:
            self.cumulative_rewards[agent_id] = 0
        for agent_id in self.episode_steps:
            self.episode_steps[agent_id] = 0

    def is_ready_update(self):
        """
        Returns whether or not the trainer has enough elements to run update model
        :return: A boolean corresponding to whether or not update_model() can be run
        """
        return self.demonstration_buffer.num_experiences > self.n_sequences

    def update_policy(self):
        """
        Updates the policy.
        """
        self.demonstration_buffer.shuffle(self.policy.sequence_length)
        batch_losses = []
        batch_size = self.n_sequences * self.policy.sequence_length
        # We either divide the entire buffer into num_batches batches, or limit the number
        # of batches to batches_per_epoch.
        num_batches = min(
            self.demonstration_buffer.num_experiences // batch_size,
            self.batches_per_epoch,
        )

        for i in range(0, num_batches * batch_size, batch_size):
            update_buffer = self.demonstration_buffer
            mini_batch = update_buffer.make_mini_batch(i, i + batch_size)
            run_out = self.policy.update(mini_batch, self.n_sequences)
            loss = run_out["policy_loss"]
            batch_losses.append(loss)
        if len(batch_losses) > 0:
            self.stats["Losses/Cloning Loss"].append(np.mean(batch_losses))
        else:
            self.stats["Losses/Cloning Loss"].append(0)
Пример #7
0
class RLTrainer(Trainer):
    """
    This class is the base class for trainers that use Reward Signals.
    Contains methods for adding BrainInfos to the Buffer.
    """
    def __init__(self, *args, **kwargs):
        super(RLTrainer, self).__init__(*args, **kwargs)
        # Make sure we have at least one reward_signal
        if not self.trainer_parameters["reward_signals"]:
            raise UnityTrainerException(
                "No reward signals were defined. At least one must be used with {}."
                .format(self.__class__.__name__))
        # collected_rewards is a dictionary from name of reward signal to a dictionary of agent_id to cumulative reward
        # used for reporting only. We always want to report the environment reward to Tensorboard, regardless
        # of what reward signals are actually present.
        self.collected_rewards = {"environment": {}}
        self.processing_buffer = ProcessingBuffer()
        self.update_buffer = AgentBuffer()
        self.episode_steps = {}

    def construct_curr_info(self, next_info: BrainInfo) -> BrainInfo:
        """
        Constructs a BrainInfo which contains the most recent previous experiences for all agents
        which correspond to the agents in a provided next_info.
        :BrainInfo next_info: A t+1 BrainInfo.
        :return: curr_info: Reconstructed BrainInfo to match agents of next_info.
        """
        visual_observations: List[List[Any]] = [
            [] for _ in next_info.visual_observations
        ]  # TODO add types to brain.py methods
        vector_observations = []
        rewards = []
        local_dones = []
        max_reacheds = []
        agents = []
        action_masks = []
        for agent_id in next_info.agents:
            agent_brain_info = self.processing_buffer[agent_id].last_brain_info
            if agent_brain_info is None:
                agent_brain_info = next_info
            agent_index = agent_brain_info.agents.index(agent_id)
            for i in range(len(next_info.visual_observations)):
                visual_observations[i].append(
                    agent_brain_info.visual_observations[i][agent_index])
            vector_observations.append(
                agent_brain_info.vector_observations[agent_index])
            rewards.append(agent_brain_info.rewards[agent_index])
            local_dones.append(agent_brain_info.local_done[agent_index])
            max_reacheds.append(agent_brain_info.max_reached[agent_index])
            agents.append(agent_brain_info.agents[agent_index])
            action_masks.append(agent_brain_info.action_masks[agent_index])
        curr_info = BrainInfo(
            visual_observations,
            vector_observations,
            rewards,
            agents,
            local_dones,
            max_reacheds,
            action_masks,
        )
        return curr_info

    def add_experiences(
        self,
        curr_info: BrainInfo,
        next_info: BrainInfo,
        take_action_outputs: ActionInfoOutputs,
    ) -> None:
        """
        Adds experiences to each agent's experience history.
        :param curr_info: current BrainInfo.
        :param next_info: next BrainInfo.
        :param take_action_outputs: The outputs of the Policy's get_action method.
        """
        self.trainer_metrics.start_experience_collection_timer()
        if take_action_outputs:
            self.stats["Policy/Entropy"].append(
                take_action_outputs["entropy"].mean())
            self.stats["Policy/Learning Rate"].append(
                take_action_outputs["learning_rate"])
            for name, signal in self.policy.reward_signals.items():
                self.stats[signal.value_name].append(
                    np.mean(take_action_outputs["value_heads"][name]))

        for agent_id in curr_info.agents:
            self.processing_buffer[agent_id].last_brain_info = curr_info
            self.processing_buffer[
                agent_id].last_take_action_outputs = take_action_outputs

        if curr_info.agents != next_info.agents:
            curr_to_use = self.construct_curr_info(next_info)
        else:
            curr_to_use = curr_info

        # Evaluate and store the reward signals
        tmp_reward_signal_outs = {}
        for name, signal in self.policy.reward_signals.items():
            tmp_reward_signal_outs[name] = signal.evaluate(
                curr_to_use, take_action_outputs["action"], next_info)
        # Store the environment reward
        tmp_environment = np.array(next_info.rewards, dtype=np.float32)

        rewards_out = AllRewardsOutput(reward_signals=tmp_reward_signal_outs,
                                       environment=tmp_environment)

        for agent_id in next_info.agents:
            stored_info = self.processing_buffer[agent_id].last_brain_info
            stored_take_action_outputs = self.processing_buffer[
                agent_id].last_take_action_outputs
            if stored_info is not None:
                idx = stored_info.agents.index(agent_id)
                next_idx = next_info.agents.index(agent_id)
                if not stored_info.local_done[idx]:
                    for i, _ in enumerate(stored_info.visual_observations):
                        self.processing_buffer[agent_id][
                            "visual_obs%d" % i].append(
                                stored_info.visual_observations[i][idx])
                        self.processing_buffer[agent_id][
                            "next_visual_obs%d" % i].append(
                                next_info.visual_observations[i][next_idx])
                    if self.policy.use_vec_obs:
                        self.processing_buffer[agent_id]["vector_obs"].append(
                            stored_info.vector_observations[idx])
                        self.processing_buffer[agent_id][
                            "next_vector_in"].append(
                                next_info.vector_observations[next_idx])
                    if self.policy.use_recurrent:
                        self.processing_buffer[agent_id]["memory"].append(
                            self.policy.retrieve_memories([agent_id])[0, :])

                    self.processing_buffer[agent_id]["masks"].append(1.0)
                    self.processing_buffer[agent_id]["done"].append(
                        next_info.local_done[next_idx])
                    # Add the outputs of the last eval
                    self.add_policy_outputs(stored_take_action_outputs,
                                            agent_id, idx)
                    # Store action masks if necessary
                    if not self.policy.use_continuous_act:
                        self.processing_buffer[agent_id]["action_mask"].append(
                            stored_info.action_masks[idx], padding_value=1)
                    self.processing_buffer[agent_id]["prev_action"].append(
                        self.policy.retrieve_previous_action([agent_id])[0, :])

                    values = stored_take_action_outputs["value_heads"]

                    # Add the value outputs if needed
                    self.add_rewards_outputs(rewards_out, values, agent_id,
                                             idx, next_idx)

                    for name, rewards in self.collected_rewards.items():
                        if agent_id not in rewards:
                            rewards[agent_id] = 0
                        if name == "environment":
                            # Report the reward from the environment
                            rewards[agent_id] += rewards_out.environment[
                                next_idx]
                        else:
                            # Report the reward signals
                            rewards[agent_id] += rewards_out.reward_signals[
                                name].scaled_reward[next_idx]
                if not next_info.local_done[next_idx]:
                    if agent_id not in self.episode_steps:
                        self.episode_steps[agent_id] = 0
                    self.episode_steps[agent_id] += 1
        self.policy.save_previous_action(curr_info.agents,
                                         take_action_outputs["action"])
        self.trainer_metrics.end_experience_collection_timer()

    def end_episode(self) -> None:
        """
        A signal that the Episode has ended. The buffer must be reset.
        Get only called when the academy resets.
        """
        self.processing_buffer.reset_local_buffers()
        for agent_id in self.episode_steps:
            self.episode_steps[agent_id] = 0
        for rewards in self.collected_rewards.values():
            for agent_id in rewards:
                rewards[agent_id] = 0

    def clear_update_buffer(self) -> None:
        """
        Clear the buffers that have been built up during inference. If
        we're not training, this should be called instead of update_policy.
        """
        self.update_buffer.reset_agent()

    def add_policy_outputs(self, take_action_outputs: ActionInfoOutputs,
                           agent_id: str, agent_idx: int) -> None:
        """
        Takes the output of the last action and store it into the training buffer.
        We break this out from add_experiences since it is very highly dependent
        on the type of trainer.
        :param take_action_outputs: The outputs of the Policy's get_action method.
        :param agent_id: the Agent we're adding to.
        :param agent_idx: the index of the Agent agent_id
        """
        raise UnityTrainerException(
            "The add_policy_outputs method was not implemented.")

    def add_rewards_outputs(
        self,
        rewards_out: AllRewardsOutput,
        values: Dict[str, np.ndarray],
        agent_id: str,
        agent_idx: int,
        agent_next_idx: int,
    ) -> None:
        """
        Takes the value and evaluated rewards output of the last action and store it
        into the training buffer. We break this out from add_experiences since it is very
        highly dependent on the type of trainer.
        :param take_action_outputs: The outputs of the Policy's get_action method.
        :param rewards_dict: Dict of rewards after evaluation
        :param agent_id: the Agent we're adding to.
        :param agent_idx: the index of the Agent agent_id in the current brain info
        :param agent_next_idx: the index of the Agent agent_id in the next brain info
        """
        raise UnityTrainerException(
            "The add_rewards_outputs method was not implemented.")

    def advance(self):
        """
        Eventually logic from TrainerController.advance() will live here.
        """
        self.clear_update_buffer()