class PPOTrainer(Trainer): """The PPOTrainer is an implementation of the PPO algorithm.""" def __init__(self, sess, brain, reward_buff_cap, trainer_parameters, training, seed, run_id): """ Responsible for collecting experiences and training PPO model. :param sess: Tensorflow session. :param trainer_parameters: The parameters for the trainer (dictionary). :param training: Whether the trainer is set for training. """ super(PPOTrainer, self).__init__(sess, brain.brain_name, trainer_parameters, training, run_id) self.param_keys = [ 'batch_size', 'beta', 'buffer_size', 'epsilon', 'gamma', 'hidden_units', 'lambd', 'learning_rate', 'max_steps', 'normalize', 'num_epoch', 'num_layers', 'time_horizon', 'sequence_length', 'summary_freq', 'use_recurrent', 'graph_scope', 'summary_path', 'memory_size', 'use_curiosity', 'curiosity_strength', 'curiosity_enc_size' ] for k in self.param_keys: if k not in trainer_parameters: raise UnityTrainerException( "The hyperparameter {0} could not be found for the PPO trainer of " "brain {1}.".format(k, brain.brain_name)) self.use_curiosity = bool(trainer_parameters['use_curiosity']) self.step = 0 self.policy = PPOPolicy(seed, brain, trainer_parameters, sess, self.is_training) stats = { 'cumulative_reward': [], 'episode_length': [], 'value_estimate': [], 'entropy': [], 'value_loss': [], 'policy_loss': [], 'learning_rate': [] } if self.use_curiosity: stats['forward_loss'] = [] stats['inverse_loss'] = [] stats['intrinsic_reward'] = [] self.intrinsic_rewards = {} self.stats = stats self.training_buffer = Buffer() self.training_buffer2 = Buffer() self.cumulative_rewards = {} self._reward_buffer = deque(maxlen=reward_buff_cap) self.episode_steps = {} self.summary_path = trainer_parameters['summary_path'] if not os.path.exists(self.summary_path): os.makedirs(self.summary_path) self.summary_writer = tf.summary.FileWriter(self.summary_path) def __str__(self): return '''Hyperparameters for the PPO Trainer of brain {0}: \n{1}'''.format( self.brain_name, '\n'.join([ '\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys ])) @property def parameters(self): """ Returns the trainer parameters of the trainer. """ return self.trainer_parameters @property def get_max_steps(self): """ Returns the maximum number of steps. Is used to know when the trainer should be stopped. :return: The maximum number of steps of the trainer """ return float(self.trainer_parameters['max_steps']) @property def get_step(self): """ Returns the number of steps the trainer has performed :return: the step count of the trainer """ return self.step @property def reward_buffer(self): """ Returns the reward buffer. The reward buffer contains the cumulative rewards of the most recent episodes completed by agents using this trainer. :return: the reward buffer. """ return self._reward_buffer def increment_step_and_update_last_reward(self): """ Increment the step count of the trainer and Updates the last reward """ if len(self.stats['cumulative_reward']) > 0: mean_reward = np.mean(self.stats['cumulative_reward']) self.policy.update_reward(mean_reward) self.policy.increment_step() self.step = self.policy.get_current_step() def take_action(self, all_brain_info: AllBrainInfo): """ Decides actions given observations information, and takes them in environment. :param all_brain_info: A dictionary of brain names and BrainInfo from environment. :return: a tuple containing action, memories, values and an object to be passed to add experiences """ curr_brain_info = all_brain_info[self.brain_name] if len(curr_brain_info.agents) == 0: return [], [], [], None, None run_out = self.policy.evaluate(curr_brain_info) self.stats['value_estimate'].append(run_out['value'].mean()) self.stats['entropy'].append(run_out['entropy'].mean()) self.stats['learning_rate'].append(run_out['learning_rate']) if self.policy.use_recurrent: return run_out['action'], run_out['memory_out'], None, \ run_out['value'], run_out else: return run_out['action'], None, None, run_out['value'], run_out def construct_curr_info(self, next_info: BrainInfo) -> BrainInfo: """ Constructs a BrainInfo which contains the most recent previous experiences for all agents info which correspond to the agents in a provided next_info. :BrainInfo next_info: A t+1 BrainInfo. :return: curr_info: Reconstructed BrainInfo to match agents of next_info. """ visual_observations = [[]] vector_observations = [] text_observations = [] memories = [] rewards = [] local_dones = [] max_reacheds = [] agents = [] prev_vector_actions = [] prev_text_actions = [] for agent_id in next_info.agents: agent_brain_info = self.training_buffer[agent_id].last_brain_info if agent_brain_info is None: agent_brain_info = next_info agent_index = agent_brain_info.agents.index(agent_id) for i in range(len(next_info.visual_observations)): visual_observations[i].append( agent_brain_info.visual_observations[i][agent_index]) vector_observations.append( agent_brain_info.vector_observations[agent_index]) text_observations.append( agent_brain_info.text_observations[agent_index]) if self.policy.use_recurrent: if len(agent_brain_info.memories > 0): memories.append(agent_brain_info.memories[agent_index]) else: memories.append(self.policy.make_empty_memory(1)) rewards.append(agent_brain_info.rewards[agent_index]) local_dones.append(agent_brain_info.local_done[agent_index]) max_reacheds.append(agent_brain_info.max_reached[agent_index]) agents.append(agent_brain_info.agents[agent_index]) prev_vector_actions.append( agent_brain_info.previous_vector_actions[agent_index]) prev_text_actions.append( agent_brain_info.previous_text_actions[agent_index]) if self.policy.use_recurrent: memories = np.vstack(memories) curr_info = BrainInfo(visual_observations, vector_observations, text_observations, memories, rewards, agents, local_dones, prev_vector_actions, prev_text_actions, max_reacheds) return curr_info def construct_curr_info2(self, next_info: BrainInfo) -> BrainInfo: """ Constructs a BrainInfo which contains the most recent previous experiences for all agents info which correspond to the agents in a provided next_info. :BrainInfo next_info: A t+1 BrainInfo. :return: curr_info: Reconstructed BrainInfo to match agents of next_info. """ visual_observations = [[]] vector_observations2 = [] text_observations = [] memories = [] rewards = [] local_dones = [] max_reacheds = [] agents = [] prev_vector_actions = [] prev_text_actions = [] for agent_id in next_info.agents: agent_brain_info = self.training_buffer[agent_id].last_brain_info agent_brain_info2 = next_info agent_index1 = agent_brain_info.agents.index(agent_id) agent_index2 = agent_brain_info2.agents.index(agent_id) for i in range(len(next_info.visual_observations)): visual_observations[i].append( agent_brain_info.visual_observations[i][agent_index]) vector_observations2.append( agent_brain_info.vector_observations[agent_index1], agent_brain_info2.vector_observations[agent_index2]) text_observations.append( agent_brain_info.text_observations[agent_index]) if self.policy.use_recurrent: if len(agent_brain_info.memories > 0): memories.append(agent_brain_info.memories[agent_index]) else: memories.append(self.policy.make_empty_memory(1)) rewards.append(agent_brain_info.rewards[agent_index]) local_dones.append(agent_brain_info.local_done[agent_index]) max_reacheds.append(agent_brain_info.max_reached[agent_index]) agents.append(agent_brain_info.agents[agent_index]) prev_vector_actions.append( agent_brain_info.previous_vector_actions[agent_index]) prev_text_actions.append( agent_brain_info.previous_text_actions[agent_index]) if self.policy.use_recurrent: memories = np.vstack(memories) curr_info2 = BrainInfo(visual_observations, vector_observations2, text_observations, memories, rewards, agents, local_dones, prev_vector_actions, prev_text_actions, max_reacheds) return curr_info2 def add_experiences(self, curr_all_info: AllBrainInfo, next_all_info: AllBrainInfo, take_action_outputs): """ Adds experiences to each agent's experience history. :param curr_all_info: Dictionary of all current brains and corresponding BrainInfo. :param next_all_info: Dictionary of all current brains and corresponding BrainInfo. :param take_action_outputs: The outputs of the take action method. """ curr_info = curr_all_info[self.brain_name] curr_info2 = curr_all_info[self.brain_name] next_info = next_all_info[self.brain_name] for agent_id in curr_info.agents: self.training_buffer[agent_id].last_brain_info = curr_info self.training_buffer[ agent_id].last_take_action_outputs = take_action_outputs for agent_id in curr_info2.agents: self.training_buffer2[agent_id].last_brain_info = curr_info2 self.training_buffer2[ agent_id].last_take_action_outputs = take_action_outputs if curr_info.agents != next_info.agents: curr_to_use = self.construct_curr_info(next_info) else: curr_to_use = curr_info intrinsic_rewards = self.policy.get_intrinsic_rewards( curr_to_use, next_info) for agent_id in next_info.agents: stored_info = self.training_buffer[agent_id].last_brain_info stored_take_action_outputs = self.training_buffer[ agent_id].last_take_action_outputs stored_take_action_outputs2 = self.training_buffer2[ agent_id].last_take_action_outputs if stored_info is not None: idx = stored_info.agents.index(agent_id) next_idx = next_info.agents.index(agent_id) if not stored_info.local_done[idx]: for i, _ in enumerate(stored_info.visual_observations): self.training_buffer[agent_id][ 'visual_obs%d' % i].append( stored_info.visual_observations[i][idx]) self.training_buffer[agent_id][ 'next_visual_obs%d' % i].append( next_info.visual_observations[i][next_idx]) if self.policy.use_vec_obs: self.training_buffer[agent_id]['vector_obs'].append( stored_info.vector_observations[idx]) self.training_buffer[agent_id][ 'next_vector_in'].append( next_info.vector_observations[next_idx]) if self.policy.use_recurrent: if stored_info.memories.shape[1] == 0: stored_info.memories = np.zeros( (len(stored_info.agents), self.policy.m_size)) self.training_buffer[agent_id]['memory'].append( stored_info.memories[idx]) actions = stored_take_action_outputs['action'] if self.policy.use_continuous_act: actions_pre = stored_take_action_outputs['pre_action'] self.training_buffer[agent_id]['actions_pre'].append( actions_pre[idx]) else: self.training_buffer[agent_id]['action_mask'].append( stored_info.action_masks[idx]) a_dist = stored_take_action_outputs['log_probs'] value1 = stored_take_action_outputs['value'] value2 = stored_take_action_outputs2['value'] if sum(value1) > sum(value2): value = value1 else: value = value2 self.training_buffer[agent_id]['actions'].append( actions[idx]) self.training_buffer[agent_id]['prev_action'].append( stored_info.previous_vector_actions[idx]) self.training_buffer[agent_id]['masks'].append(1.0) if self.use_curiosity: self.training_buffer[agent_id]['rewards'].append( next_info.rewards[next_idx] + intrinsic_rewards[next_idx]) else: self.training_buffer[agent_id]['rewards'].append( next_info.rewards[next_idx]) self.training_buffer[agent_id]['action_probs'].append( a_dist[idx]) self.training_buffer[agent_id]['value_estimates'].append( value[idx][0]) if agent_id not in self.cumulative_rewards: self.cumulative_rewards[agent_id] = 0 self.cumulative_rewards[agent_id] += next_info.rewards[ next_idx] if self.use_curiosity: if agent_id not in self.intrinsic_rewards: self.intrinsic_rewards[agent_id] = 0 self.intrinsic_rewards[agent_id] += intrinsic_rewards[ next_idx] if not next_info.local_done[next_idx]: if agent_id not in self.episode_steps: self.episode_steps[agent_id] = 0 self.episode_steps[agent_id] += 1 def process_experiences(self, current_info: AllBrainInfo, new_info: AllBrainInfo): """ Checks agent histories for processing condition, and processes them as necessary. Processing involves calculating value and advantage targets for model updating step. :param current_info: Dictionary of all current brains and corresponding BrainInfo. :param new_info: Dictionary of all next brains and corresponding BrainInfo. """ info = new_info[self.brain_name] for l in range(len(info.agents)): agent_actions = self.training_buffer[info.agents[l]]['actions'] if ((info.local_done[l] or len(agent_actions) > self.trainer_parameters['time_horizon']) and len(agent_actions) > 0): agent_id = info.agents[l] if info.local_done[l] and not info.max_reached[l]: value_next = 0.0 else: if info.max_reached[l]: bootstrapping_info = self.training_buffer[ agent_id].last_brain_info idx = bootstrapping_info.agents.index(agent_id) else: bootstrapping_info = info idx = l value_next = self.policy.get_value_estimate( bootstrapping_info, idx) self.training_buffer[agent_id]['advantages'].set( get_gae(rewards=self.training_buffer[agent_id] ['rewards'].get_batch(), value_estimates=self.training_buffer[agent_id] ['value_estimates'].get_batch(), value_next=value_next, gamma=self.trainer_parameters['gamma'], lambd=self.trainer_parameters['lambd'])) self.training_buffer[agent_id]['discounted_returns'].set( self.training_buffer[agent_id]['advantages'].get_batch() + self.training_buffer[agent_id] ['value_estimates'].get_batch()) self.training_buffer.append_update_buffer( agent_id, batch_size=None, training_length=self.policy.sequence_length) self.training_buffer[agent_id].reset_agent() if info.local_done[l]: self.stats['cumulative_reward'].append( self.cumulative_rewards.get(agent_id, 0)) self.reward_buffer.appendleft( self.cumulative_rewards.get(agent_id, 0)) self.stats['episode_length'].append( self.episode_steps.get(agent_id, 0)) self.cumulative_rewards[agent_id] = 0 self.episode_steps[agent_id] = 0 if self.use_curiosity: self.stats['intrinsic_reward'].append( self.intrinsic_rewards.get(agent_id, 0)) self.intrinsic_rewards[agent_id] = 0 def end_episode(self): """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ self.training_buffer.reset_all() for agent_id in self.cumulative_rewards: self.cumulative_rewards[agent_id] = 0 for agent_id in self.episode_steps: self.episode_steps[agent_id] = 0 if self.use_curiosity: for agent_id in self.intrinsic_rewards: self.intrinsic_rewards[agent_id] = 0 def is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to whether or not update_model() can be run """ size_of_buffer = len(self.training_buffer.update_buffer['actions']) return size_of_buffer > max( int(self.trainer_parameters['buffer_size'] / self.policy.sequence_length), 1) def update_policy(self): """ Uses training_buffer to update the policy. """ n_sequences = max( int(self.trainer_parameters['batch_size'] / self.policy.sequence_length), 1) value_total, policy_total, forward_total, inverse_total = [], [], [], [] advantages = self.training_buffer.update_buffer[ 'advantages'].get_batch() self.training_buffer.update_buffer['advantages'].set( (advantages - advantages.mean()) / (advantages.std() + 1e-10)) num_epoch = self.trainer_parameters['num_epoch'] for k in range(num_epoch): self.training_buffer.update_buffer.shuffle() buffer = self.training_buffer.update_buffer for l in range( len(self.training_buffer.update_buffer['actions']) // n_sequences): start = l * n_sequences end = (l + 1) * n_sequences run_out = self.policy.update( buffer.make_mini_batch(start, end), n_sequences) value_total.append(run_out['value_loss']) policy_total.append(np.abs(run_out['policy_loss'])) if self.use_curiosity: inverse_total.append(run_out['inverse_loss']) forward_total.append(run_out['forward_loss']) self.stats['value_loss'].append(np.mean(value_total)) self.stats['policy_loss'].append(np.mean(policy_total)) if self.use_curiosity: self.stats['forward_loss'].append(np.mean(forward_total)) self.stats['inverse_loss'].append(np.mean(inverse_total)) self.training_buffer.reset_update_buffer()
class BehavioralCloningTrainer(Trainer): """The ImitationTrainer is an implementation of the imitation learning.""" def __init__(self, sess, brain, trainer_parameters, training, seed, run_id): """ Responsible for collecting experiences and training PPO model. :param sess: Tensorflow session. :param trainer_parameters: The parameters for the trainer (dictionary). :param training: Whether the trainer is set for training. """ super(BehavioralCloningTrainer, self).__init__(sess, brain, trainer_parameters, training, run_id) self.param_keys = ['brain_to_imitate', 'batch_size', 'time_horizon', 'graph_scope', 'summary_freq', 'max_steps', 'batches_per_epoch', 'use_recurrent', 'hidden_units','learning_rate', 'num_layers', 'sequence_length', 'memory_size'] for k in self.param_keys: if k not in trainer_parameters: raise UnityTrainerException("The hyperparameter {0} could not be found for the Imitation trainer of " "brain {1}.".format(k, brain.brain_name)) self.policy = BCPolicy(seed, brain, trainer_parameters, sess) self.brain_name = brain.brain_name self.brain_to_imitate = trainer_parameters['brain_to_imitate'] self.batches_per_epoch = trainer_parameters['batches_per_epoch'] self.n_sequences = max(int(trainer_parameters['batch_size'] / self.policy.sequence_length), 1) self.cumulative_rewards = {} self.episode_steps = {} self.stats = {'losses': [], 'episode_length': [], 'cumulative_reward': []} self.training_buffer = Buffer() self.summary_path = trainer_parameters['summary_path'] if not os.path.exists(self.summary_path): os.makedirs(self.summary_path) self.summary_writer = tf.summary.FileWriter(self.summary_path) def __str__(self): return '''Hyperparameters for the Imitation Trainer of brain {0}: \n{1}'''.format( self.brain_name, '\n'.join(['\t{0}:\t{1}'.format(x, self.trainer_parameters[x]) for x in self.param_keys])) @property def parameters(self): """ Returns the trainer parameters of the trainer. """ return self.trainer_parameters @property def get_max_steps(self): """ Returns the maximum number of steps. Is used to know when the trainer should be stopped. :return: The maximum number of steps of the trainer """ return float(self.trainer_parameters['max_steps']) @property def get_step(self): """ Returns the number of steps the trainer has performed :return: the step count of the trainer """ return self.policy.get_current_step() @property def get_last_reward(self): """ Returns the last reward the trainer has had :return: the new last reward """ if len(self.stats['cumulative_reward']) > 0: return np.mean(self.stats['cumulative_reward']) else: return 0 def increment_step_and_update_last_reward(self): """ Increment the step count of the trainer and Updates the last reward """ self.policy.increment_step() return def take_action(self, all_brain_info: AllBrainInfo): """ Decides actions using policy given current brain info. :param all_brain_info: AllBrainInfo from environment. :return: a tuple containing action, memories, values and an object to be passed to add experiences """ if len(all_brain_info[self.brain_name].agents) == 0: return [], [], [], None, None agent_brain = all_brain_info[self.brain_name] run_out = self.policy.evaluate(agent_brain) if self.policy.use_recurrent: return run_out['action'], run_out['memory_out'], None, None, None else: return run_out['action'], None, None, None, None def add_experiences(self, curr_info: AllBrainInfo, next_info: AllBrainInfo, take_action_outputs): """ Adds experiences to each agent's experience history. :param curr_info: Current AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo). :param next_info: Next AllBrainInfo (Dictionary of all current brains and corresponding BrainInfo). :param take_action_outputs: The outputs of the take action method. """ # Used to collect teacher experience into training buffer info_teacher = curr_info[self.brain_to_imitate] next_info_teacher = next_info[self.brain_to_imitate] for agent_id in info_teacher.agents: self.training_buffer[agent_id].last_brain_info = info_teacher for agent_id in next_info_teacher.agents: stored_info_teacher = self.training_buffer[agent_id].last_brain_info if stored_info_teacher is None: continue else: idx = stored_info_teacher.agents.index(agent_id) next_idx = next_info_teacher.agents.index(agent_id) if stored_info_teacher.text_observations[idx] != "": info_teacher_record, info_teacher_reset = \ stored_info_teacher.text_observations[idx].lower().split(",") next_info_teacher_record, next_info_teacher_reset = next_info_teacher.text_observations[idx].\ lower().split(",") if next_info_teacher_reset == "true": self.training_buffer.reset_update_buffer() else: info_teacher_record, next_info_teacher_record = "true", "true" if info_teacher_record == "true" and next_info_teacher_record == "true": if not stored_info_teacher.local_done[idx]: for i in range(self.policy.vis_obs_size): self.training_buffer[agent_id]['visual_obs%d' % i]\ .append(stored_info_teacher.visual_observations[i][idx]) if self.policy.use_vec_obs: self.training_buffer[agent_id]['vector_obs']\ .append(stored_info_teacher.vector_observations[idx]) if self.policy.use_recurrent: if stored_info_teacher.memories.shape[1] == 0: stored_info_teacher.memories = np.zeros((len(stored_info_teacher.agents), self.policy.m_size)) self.training_buffer[agent_id]['memory'].append(stored_info_teacher.memories[idx]) self.training_buffer[agent_id]['actions'].append(next_info_teacher. previous_vector_actions[next_idx]) info_student = curr_info[self.brain_name] next_info_student = next_info[self.brain_name] for agent_id in info_student.agents: self.training_buffer[agent_id].last_brain_info = info_student # Used to collect information about student performance. for agent_id in next_info_student.agents: stored_info_student = self.training_buffer[agent_id].last_brain_info if stored_info_student is None: continue else: next_idx = next_info_student.agents.index(agent_id) if agent_id not in self.cumulative_rewards: self.cumulative_rewards[agent_id] = 0 self.cumulative_rewards[agent_id] += next_info_student.rewards[next_idx] if not next_info_student.local_done[next_idx]: if agent_id not in self.episode_steps: self.episode_steps[agent_id] = 0 self.episode_steps[agent_id] += 1 def process_experiences(self, current_info: AllBrainInfo, next_info: AllBrainInfo): """ Checks agent histories for processing condition, and processes them as necessary. Processing involves calculating value and advantage targets for model updating step. :param current_info: Current AllBrainInfo :param next_info: Next AllBrainInfo """ info_teacher = next_info[self.brain_to_imitate] for l in range(len(info_teacher.agents)): teacher_action_list = len(self.training_buffer[info_teacher.agents[l]]['actions']) horizon_reached = teacher_action_list > self.trainer_parameters['time_horizon'] teacher_filled = len(self.training_buffer[info_teacher.agents[l]]['actions']) > 0 if ((info_teacher.local_done[l] or horizon_reached) and teacher_filled): agent_id = info_teacher.agents[l] self.training_buffer.append_update_buffer( agent_id, batch_size=None, training_length=self.policy.sequence_length) self.training_buffer[agent_id].reset_agent() info_student = next_info[self.brain_name] for l in range(len(info_student.agents)): if info_student.local_done[l]: agent_id = info_student.agents[l] self.stats['cumulative_reward'].append( self.cumulative_rewards.get(agent_id, 0)) self.stats['episode_length'].append( self.episode_steps.get(agent_id, 0)) self.cumulative_rewards[agent_id] = 0 self.episode_steps[agent_id] = 0 def end_episode(self): """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. """ self.training_buffer.reset_all() for agent_id in self.cumulative_rewards: self.cumulative_rewards[agent_id] = 0 for agent_id in self.episode_steps: self.episode_steps[agent_id] = 0 def is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to whether or not update_model() can be run """ return len(self.training_buffer.update_buffer['actions']) > self.n_sequences def update_policy(self): """ Updates the policy. """ self.training_buffer.update_buffer.shuffle() batch_losses = [] num_batches = min(len(self.training_buffer.update_buffer['actions']) // self.n_sequences, self.batches_per_epoch) for i in range(num_batches): buffer = self.training_buffer.update_buffer start = i * self.n_sequences end = (i + 1) * self.n_sequences mini_batch = buffer.make_mini_batch(start, end) run_out = self.policy.update(mini_batch, self.n_sequences) loss = run_out['policy_loss'] batch_losses.append(loss) if len(batch_losses) > 0: self.stats['losses'].append(np.mean(batch_losses)) else: self.stats['losses'].append(0)