def test_reward_provider_save(tmp_path, optimizer): OptimizerClass, HyperparametersClass = optimizer trainer_settings = TrainerSettings() trainer_settings.hyperparameters = HyperparametersClass() trainer_settings.reward_signals = { RewardSignalType.CURIOSITY: CuriositySettings(), RewardSignalType.GAIL: GAILSettings(demo_path=DEMO_PATH), RewardSignalType.RND: RNDSettings(), } policy = create_policy_mock(trainer_settings, use_discrete=False) optimizer = OptimizerClass(policy, trainer_settings) # save at path 1 path1 = os.path.join(tmp_path, "runid1") model_saver = TorchModelSaver(trainer_settings, path1) model_saver.register(policy) model_saver.register(optimizer) model_saver.initialize_or_load() policy.set_step(2000) model_saver.save_checkpoint("MockBrain", 2000) # create a new optimizer and policy optimizer2 = OptimizerClass(policy, trainer_settings) policy2 = create_policy_mock(trainer_settings, use_discrete=False) # load weights model_saver2 = TorchModelSaver(trainer_settings, path1, load=True) model_saver2.register(policy2) model_saver2.register(optimizer2) model_saver2.initialize_or_load() # This is to load the optimizers # assert the models have the same weights module_dict_1 = optimizer.get_modules() module_dict_2 = optimizer2.get_modules() assert "Module:GAIL" in module_dict_1 assert "Module:GAIL" in module_dict_2 assert "Module:Curiosity" in module_dict_1 assert "Module:Curiosity" in module_dict_2 assert "Module:RND-pred" in module_dict_1 assert "Module:RND-pred" in module_dict_2 assert "Module:RND-target" in module_dict_1 assert "Module:RND-target" in module_dict_2 for name, module1 in module_dict_1.items(): assert name in module_dict_2 module2 = module_dict_2[name] if hasattr(module1, "parameters"): for param1, param2 in zip(module1.parameters(), module2.parameters()): assert param1.data.ne(param2.data).sum() == 0 # Run some rewards data = create_agent_buffer(policy.behavior_spec, 1) for reward_name in optimizer.reward_signals.keys(): rp_1 = optimizer.reward_signals[reward_name] rp_2 = optimizer2.reward_signals[reward_name] assert np.array_equal(rp_1.evaluate(data), rp_2.evaluate(data))
def test_reward_decreases(behavior_spec: BehaviorSpec, seed: int) -> None: np.random.seed(seed) torch.manual_seed(seed) rnd_settings = RNDSettings(32, 0.01) rnd_rp = RNDRewardProvider(behavior_spec, rnd_settings) buffer = create_agent_buffer(behavior_spec, 5) rnd_rp.update(buffer) reward_old = rnd_rp.evaluate(buffer)[0] for _ in range(100): rnd_rp.update(buffer) reward_new = rnd_rp.evaluate(buffer)[0] assert reward_new < reward_old
def test_load_different_reward_provider(caplog, tmp_path, optimizer): OptimizerClass, HyperparametersClass = optimizer trainer_settings = TrainerSettings() trainer_settings.hyperparameters = HyperparametersClass() trainer_settings.reward_signals = { RewardSignalType.CURIOSITY: CuriositySettings(), RewardSignalType.RND: RNDSettings(), } policy = create_policy_mock(trainer_settings, use_discrete=False) optimizer = OptimizerClass(policy, trainer_settings) # save at path 1 path1 = os.path.join(tmp_path, "runid1") model_saver = TorchModelSaver(trainer_settings, path1) model_saver.register(policy) model_saver.register(optimizer) model_saver.initialize_or_load() assert len(optimizer.critic.value_heads.stream_names) == 2 policy.set_step(2000) model_saver.save_checkpoint("MockBrain", 2000) trainer_settings2 = TrainerSettings() trainer_settings2.hyperparameters = HyperparametersClass() trainer_settings2.reward_signals = { RewardSignalType.GAIL: GAILSettings(demo_path=DEMO_PATH) } # create a new optimizer and policy policy2 = create_policy_mock(trainer_settings2, use_discrete=False) optimizer2 = OptimizerClass(policy2, trainer_settings2) # load weights model_saver2 = TorchModelSaver(trainer_settings2, path1, load=True) model_saver2.register(policy2) model_saver2.register(optimizer2) assert len(optimizer2.critic.value_heads.stream_names) == 1 model_saver2.initialize_or_load() # This is to load the optimizers messages = [ rec.message for rec in caplog.records if rec.levelno == WARNING ] assert len(messages) > 0
def test_factory(behavior_spec: BehaviorSpec) -> None: curiosity_settings = RNDSettings(32, 0.01) curiosity_rp = create_reward_provider(RewardSignalType.RND, behavior_spec, curiosity_settings) assert curiosity_rp.name == "RND"
def test_construction(behavior_spec: BehaviorSpec) -> None: curiosity_settings = RNDSettings(32, 0.01) curiosity_settings.strength = 0.1 curiosity_rp = RNDRewardProvider(behavior_spec, curiosity_settings) assert curiosity_rp.strength == 0.1 assert curiosity_rp.name == "RND"