transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) test_dataset = datasets.ImageFolder(args.data_dir, train=False, download=False, transform=test_transform) train_pics = 121187 elif args.model == 'Abalone': model = ResNetOnCifar10.abalone_model() test_dataset = mldatasets.abalone(args.data_dir, False) train_pics = 3342 elif args.model == "Bodyfat": model = ResNetOnCifar10.bodyfat_model() test_dataset = mldatasets.bodyfat(args.data_dir, False) train_pics = 202 elif args.model == 'Housing': model = ResNetOnCifar10.housing_model() test_dataset = mldatasets.housing(args.data_dir, False) train_pics = 405 else: print('Model must be {} or {}!'.format('MnistCNN', 'AlexNet')) sys.exit(-1) train_bsz = args.train_bsz train_bsz /= len(workers) world_size = args.workers_num + 1 this_rank = args.this_rank
test_transform = train_transform train_dataset = datasets.ImageFolder(args.data_dir, train=True, download=False, transform=train_transform) test_dataset = datasets.ImageFolder(args.data_dir, train=False, download=False, transform=test_transform) elif args.model == 'Abalone': model = ResNetOnCifar10.abalone_model() train_dataset = mldatasets.abalone(args.data_dir, True) test_dataset = mldatasets.abalone(args.data_dir, False) elif args.model == "Bodyfat": model = ResNetOnCifar10.bodyfat_model() train_dataset = mldatasets.bodyfat(args.data_dir, True) test_dataset = mldatasets.bodyfat(args.data_dir, False) elif args.model == 'Housing': model = ResNetOnCifar10.housing_model() train_dataset = mldatasets.housing(args.data_dir, True) test_dataset = mldatasets.housing(args.data_dir, False) else: print('Model must be {} or {}!'.format('MnistCNN', 'AlexNet')) sys.exit(-1) train_bsz = args.train_bsz test_bsz = 400 train_bsz /= len(workers) train_bsz = int(train_bsz)