Пример #1
0
 def test_olmar_alpha1_error(self):
     """
     Tests ValueError if reversion method is 2 and alpha is less than 1.
     """
     # Initialize OLMAR.
     olmar5 = OLMAR(reversion_method=2, epsilon=2, alpha=-1)
     with self.assertRaises(ValueError):
         # Running allocate will raise ValueError.
         olmar5.allocate(self.data)
Пример #2
0
 def test_olmar_window_error(self):
     """
     Tests ValueError if reversion method is 1 and window is less than 1.
     """
     # Initialize OLMAR.
     olmar3 = OLMAR(reversion_method=1, epsilon=2, window=0)
     with self.assertRaises(ValueError):
         # Running allocate will raise ValueError.
         olmar3.allocate(self.data)
Пример #3
0
 def test_olmar_epsilon_error(self):
     """
     Tests ValueError if epsilon is below than 1.
     """
     # Initialize OLMAR.
     olmar2 = OLMAR(reversion_method=1, epsilon=0, window=10)
     with self.assertRaises(ValueError):
         # Running allocate will raise ValueError.
         olmar2.allocate(self.data)
Пример #4
0
 def test_olmar_edge_case_error(self):
     """
     Tests that lambd returns 0 if predicted change is mean change.
     """
     # Initialize OLMAR.
     olmar7 = OLMAR(reversion_method=1, epsilon=2, window=1)
     no_change_data = self.data
     no_change_data.iloc[:] = 1
     olmar7.allocate(no_change_data, resample_by='M')
Пример #5
0
 def test_olmar1_solution(self):
     """
     Test the calculation of online moving average reversion with the second reversion method.
     """
     # Initialize OLMAR.
     olmar1 = OLMAR(reversion_method=2, epsilon=10, alpha=0.5)
     # Allocates asset prices to OLMAR.
     olmar1.allocate(self.data, resample_by='M')
     # Create np.array of all_weights.
     all_weights = np.array(olmar1.all_weights)
     # Check if all weights sum to 1.
     for i in range(all_weights.shape[0]):
         weights = all_weights[i]
         assert (weights >= 0).all()
         assert len(weights) == self.data.shape[1]
         np.testing.assert_almost_equal(np.sum(weights), 1)