Пример #1
0
def eval_and_log_metrics(model, X, y_true, *, prefix, sample_weight=None):
    """
    Computes and logs metrics (and artifacts) for the given model and labeled dataset.
    The metrics/artifacts mirror what is auto-logged when training a model
    (see mlflow.sklearn.autolog).

    :param model: The model to be evaluated.
    :param X: The features for the evaluation dataset.
    :param y_true: The labels for the evaluation dataset.
    :param prefix: Prefix used to name metrics and artifacts.
    :param sample_weight: Per-sample weights to apply in the computation of metrics/artifacts.
    :return: The dict of logged metrics. Artifacts can be retrieved by inspecting the run.

    ** Example **

    .. code-block:: python

        from sklearn.linear_model import LinearRegression
        import mlflow

        # enable autologging
        mlflow.sklearn.autolog()

        # prepare training data
        X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
        y = np.dot(X, np.array([1, 2])) + 3

        # prepare evaluation data
        X_eval = np.array([[3, 3], [3, 4]])
        y_eval = np.dot(X_eval, np.array([1,2])) + 3

        # train a model
        model = LinearRegression()
        with mlflow.start_run() as run:
            model.fit(X, y)
            metrics = mlflow.sklearn.eval_and_log_metrics(model, X_eval, y_eval, prefix="val_")


    Each metric's and artifact's name is prefixed with `prefix`, e.g., in the previous example the
    metrics and artifacts are named 'val_XXXXX'. Note that training-time metrics are auto-logged
    as 'training_XXXXX'. Metrics and artifacts are logged under the currently active run if one
    exists, otherwise a new run is started and left active.

    Raises an error if:
      - prefix is empty
      - model is not an sklearn estimator or does not support the 'predict' method
    """
    from mlflow.sklearn.utils import _log_estimator_content
    from sklearn.base import BaseEstimator

    if prefix is None or prefix == "":
        raise ValueError("Must specify a non-empty prefix")

    if not isinstance(model, BaseEstimator):
        raise ValueError(
            "The provided model was not a sklearn estimator. Please ensure the passed-in model is "
            "a sklearn estimator subclassing sklearn.base.BaseEstimator")

    if not hasattr(model, "predict"):
        raise ValueError(
            "Model does not support predictions. Please pass a model object defining a predict() "
            "method")

    active_run = mlflow.active_run()
    run = active_run if active_run is not None else mlflow.start_run()

    metrics = _log_estimator_content(
        estimator=model,
        run_id=run.info.run_id,
        prefix=prefix,
        X=X,
        y_true=y_true,
        sample_weight=sample_weight,
    )

    return metrics
Пример #2
0
    def _log_posttraining_metadata(estimator, *args, **kwargs):
        """
        Records metadata for a scikit-learn estimator after training has completed.
        This is intended to be invoked within a patched scikit-learn training routine
        (e.g., `fit()`, `fit_transform()`, ...) and assumes the existence of an active
        MLflow run that can be referenced via the fluent Tracking API.

        :param estimator: The scikit-learn estimator for which to log metadata.
        :param args: The arguments passed to the scikit-learn training routine (e.g.,
                     `fit()`, `fit_transform()`, ...).
        :param kwargs: The keyword arguments passed to the scikit-learn training routine.
        """
        def infer_model_signature(input_example):
            if not hasattr(estimator, "predict"):
                raise Exception(
                    "the trained model does not specify a `predict` function, "
                    + "which is required in order to infer the signature")

            return infer_signature(input_example,
                                   estimator.predict(input_example))

        (X, y_true,
         sample_weight) = _get_args_for_metrics(estimator.fit, args, kwargs)

        # log common metrics and artifacts for estimators (classifier, regressor)
        _log_estimator_content(
            estimator=estimator,
            prefix=_TRAINING_PREFIX,
            run_id=mlflow.active_run().info.run_id,
            X=X,
            y_true=y_true,
            sample_weight=sample_weight,
        )

        def get_input_example():
            # Fetch an input example using the first several rows of the array-like
            # training data supplied to the training routine (e.g., `fit()`)
            input_example = X[:INPUT_EXAMPLE_SAMPLE_ROWS]
            return input_example

        if log_models:
            # Will only resolve `input_example` and `signature` if `log_models` is `True`.
            input_example, signature = resolve_input_example_and_signature(
                get_input_example,
                infer_model_signature,
                log_input_examples,
                log_model_signatures,
                _logger,
            )

            try_mlflow_log(
                log_model,
                estimator,
                artifact_path="model",
                signature=signature,
                input_example=input_example,
            )

        if _is_parameter_search_estimator(estimator):
            if hasattr(estimator, "best_estimator_") and log_models:
                try_mlflow_log(
                    log_model,
                    estimator.best_estimator_,
                    artifact_path="best_estimator",
                    signature=signature,
                    input_example=input_example,
                )

            if hasattr(estimator, "best_score_"):
                try_mlflow_log(mlflow.log_metric, "best_cv_score",
                               estimator.best_score_)

            if hasattr(estimator, "best_params_"):
                best_params = {
                    "best_{param_name}".format(param_name=param_name):
                    param_value
                    for param_name, param_value in
                    estimator.best_params_.items()
                }
                try_mlflow_log(mlflow.log_params, best_params)

            if hasattr(estimator, "cv_results_"):
                try:
                    # Fetch environment-specific tags (e.g., user and source) to ensure that lineage
                    # information is consistent with the parent run
                    child_tags = context_registry.resolve_tags()
                    child_tags.update({MLFLOW_AUTOLOGGING: FLAVOR_NAME})
                    _create_child_runs_for_parameter_search(
                        cv_estimator=estimator,
                        parent_run=mlflow.active_run(),
                        child_tags=child_tags,
                    )
                except Exception as e:

                    msg = (
                        "Encountered exception during creation of child runs for parameter search."
                        " Child runs may be missing. Exception: {}".format(
                            str(e)))
                    _logger.warning(msg)

                try:
                    cv_results_df = pd.DataFrame.from_dict(
                        estimator.cv_results_)
                    _log_parameter_search_results_as_artifact(
                        cv_results_df,
                        mlflow.active_run().info.run_id)
                except Exception as e:

                    msg = (
                        "Failed to log parameter search results as an artifact."
                        " Exception: {}".format(str(e)))
                    _logger.warning(msg)