Пример #1
0
 def thread_func(start, end):
     try:
         mlsl.grayify(img, img_type, src_col_offset,
                      src_row_offset + start,
                      src_col_stride, src_row_stride,
                      src_chan_stride, dst_col_offset,
                      dst_row_offset + start,
                      dst_col_stride, dst_row_stride,
                      cols, end-start, chans,
                      weights, gamma, output)
     finally:
         done.release()
Пример #2
0
def grayify(img, img_type, src_col_offset, src_row_offset,
            src_col_stride, src_row_stride, src_chan_stride,
            dst_col_offset, dst_row_offset,
            dst_col_stride, dst_row_stride, cols, rows, chans,
            weights, gamma, output=None, threads=2):

    if threads < 1:
        raise Error('the argument threads must be positive')
    if threads < 2:
        return mlsl.grayify(img, img_type, src_col_offset, src_row_offset,
                            src_col_stride, src_row_stride, src_chan_stride,
                            dst_col_offset, dst_row_offset,
                            dst_col_stride, dst_row_stride,
                            cols, rows, chans,
                            weights, gamma, output)

    if threads > rows:
        threads = rows

    # create output buffer
    output_is_array = False
    if output is None:
        output_size = (struct.calcsize('f') +
                       dst_col_stride*(dst_col_offset+cols-1) +
                       dst_row_stride*(dst_row_offset+rows-1))
        output = array.array('f', output_size*'\x00')
        output_is_array = True

    done = threading.Semaphore(0)

    def thread_func(start, end):
        try:
            mlsl.grayify(img, img_type, src_col_offset,
                         src_row_offset + start,
                         src_col_stride, src_row_stride,
                         src_chan_stride, dst_col_offset,
                         dst_row_offset + start,
                         dst_col_stride, dst_row_stride,
                         cols, end-start, chans,
                         weights, gamma, output)
        finally:
            done.release()

    starts = [int(round(1.0*x*rows/threads)) for x in range(threads)]
    starts.append(cols)

    for j in range(len(starts)-1):
        start = starts[j]
        end = starts[j+1]
        thread.start_new_thread(thread_func, (start,end))

    for j in range(len(starts)-1):
        done.acquire()

    if output_is_array:
        output = output.tostring()

    return output