def test_normal_equation(): t1 = np.array([[-0.08], [1.02]]) b1 = np.array([0.00]) ada = Adaline(epochs=30, eta=0.01, minibatches=None, random_seed=None) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, decimal=2) np.testing.assert_almost_equal(ada.b_, b1, decimal=2) assert (y1 == ada.predict(X_std)).all(), ada.predict(X_std)
def test_refit_weights(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=15, eta=0.01, solver='gd', random_seed=1) ada.fit(X_std, y1, init_weights=True) ada.fit(X_std, y1, init_weights=False) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y1 == ada.predict(X_std)).all())
def test_0_1_class(): t1 = np.array([0.51, -0.04, 0.51]) ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1) ada.fit(X_std, y0) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y0 == ada.predict(X_std)).all())
def test_stochastic_gradient_descent(): t1 = np.array([0.03, -0.09, 1.02]) ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert ((y1 == ada.predict(X_std)).all())
def test_gradient_descent(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=30, eta=0.01, learning='gd', random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y1 == ada.predict(X_std)).all())
def test_refit_weights(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=15, eta=0.01, solver='gd', random_seed=1) ada.fit(X_std, y1, init_weights=True) ada.fit(X_std, y1, init_weights=False) np.testing.assert_almost_equal(ada.w_, t1, 2) assert ((y1 == ada.predict(X_std)).all())
def test_0_1_class(): t1 = np.array([0.51, -0.04, 0.51]) ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1) ada.fit(X_std, y0) np.testing.assert_almost_equal(ada.w_, t1, 2) assert ((y0 == ada.predict(X_std)).all())
def test_refit_weights(): t1 = np.array([[-0.08], [1.02]]) ada = Adaline(epochs=15, eta=0.01, minibatches=1, random_seed=1) ada.fit(X_std, y1, init_params=True) ada.fit(X_std, y1, init_params=False) np.testing.assert_almost_equal(ada.w_, t1, 2) assert ((y1 == ada.predict(X_std)).all())
def test_stochastic_gradient_descent(): t1 = np.array([0.03, -0.09, 1.02]) ada = Adaline(epochs=30, eta=0.01, learning='sgd', random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y1 == ada.predict(X_std)).all())
def test_gradient_descent(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=30, eta=0.01, learning='gd', random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert ((y1 == ada.predict(X_std)).all())
def test_gradient_descent(): t1 = np.array([[-0.08], [1.02]]) b1 = np.array([0.00]) ada = Adaline(epochs=30, eta=0.01, minibatches=1, random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, decimal=2) np.testing.assert_almost_equal(ada.b_, b1, decimal=2) assert ((y1 == ada.predict(X_std)).all())
def test_normal_equation(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=30, eta=0.01, minibatches=None, random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y1 == ada.predict(X_std)).all())
def test_stochastic_gradient_descent(): t1 = np.array([[-0.08], [1.02]]) ada = Adaline(epochs=30, eta=0.01, minibatches=len(y), random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y1 == ada.predict(X_std)).all())
def test_standardized_iris_data_with_zero_weights(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=30, eta=0.01, solver='gd', random_seed=1, zero_init_weight=True) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert ((y1 == ada.predict(X_std)).all())
def test_standardized_iris_data_with_shuffle(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=30, eta=0.01, solver='gd', random_seed=1, shuffle=True) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y1 == ada.predict(X_std)).all())
def test_standardized_iris_data_with_zero_weights(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=30, eta=0.01, minibatches=1, random_seed=1, zero_init_weight=True) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y1 == ada.predict(X_std)).all())
def test_refit_weights(): t1 = np.array([[-0.08], [1.02]]) ada = Adaline(epochs=15, eta=0.01, minibatches=1, random_seed=1) ada.fit(X_std, y1, init_params=True) ada.fit(X_std, y1, init_params=False) np.testing.assert_almost_equal(ada.w_, t1, 2) assert((y1 == ada.predict(X_std)).all())
def test_gradient_descent(): t1 = np.array([[-0.08], [1.02]]) b1 = np.array([0.00]) ada = Adaline(epochs=30, eta=0.01, minibatches=1, random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, decimal=2) np.testing.assert_almost_equal(ada.b_, b1, decimal=2) assert((y1 == ada.predict(X_std)).all())
def test_normal_equation(): t1 = np.array([-5.21e-16, -7.86e-02, 1.02e+00]) ada = Adaline(epochs=30, eta=0.01, solver='normal equation', random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert ((y1 == ada.predict(X_std)).all())
def test_stochastic_gradient_descent(): t1 = np.array([[-0.08], [1.02]]) ada = Adaline(epochs=30, eta=0.01, minibatches=len(y), random_seed=1) ada.fit(X_std, y1) np.testing.assert_almost_equal(ada.w_, t1, 2) assert ((y1 == ada.predict(X_std)).all())