Пример #1
0
def test_sparse():
    copy = CopyTransformer()
    tfidf = TfidfTransformer()
    X_t = tfidf.fit_transform([[1, 2, 3]])
    assert issparse(X_t)
    X_dense = copy.transform(X_t).toarray()
    expect = np.array([[0.26726124, 0.53452248, 0.80178373]])
    assert np.allclose(X_dense, expect)
Пример #2
0
def test_sparse():
    copy = CopyTransformer()
    tfidf = TfidfTransformer()
    X_t = tfidf.fit_transform([[1, 2, 3]])
    assert issparse(X_t)
    X_dense = copy.transform(X_t).toarray()
    expect = np.array([[0.26726124, 0.53452248, 0.80178373]])
    assert np.allclose(X_dense, expect)
Пример #3
0
def test_pipeline():
    param_grid = [{'logisticregression__C': [1, 0.1, 10]}]
    pipe = make_pipeline(StandardScaler(),
                         CopyTransformer(),
                         LogisticRegression())
    grid = GridSearchCV(pipe, param_grid, cv=3, n_jobs=1)
    grid.fit(X, y)
Пример #4
0
def test_pipeline():
    param_grid = [{'logisticregression__C': [1, 0.1, 10]}]
    pipe = make_pipeline(
        StandardScaler(), CopyTransformer(),
        LogisticRegression(solver='liblinear', multi_class='ovr'))
    grid = GridSearchCV(pipe, param_grid, cv=3, n_jobs=1, iid=False)
    grid.fit(X, y)
Пример #5
0
def test_copy_failtype():
    copy = CopyTransformer()

    expect = ("X must be a list or NumPy array or SciPy sparse array."
              " Found <class 'int'>")
    if sys.version_info < (3, 0):
        expect = expect.replace('class', 'type')
    assert_raises(ValueError, expect, copy.transform, 1)
Пример #6
0
def test_copy():
    copy = CopyTransformer()
    np.testing.assert_array_equal(X, copy.transform(X))
Пример #7
0
def test_copy():
    copy = CopyTransformer()
    np.testing.assert_array_equal(X, copy.transform(X))
Пример #8
0
from mlxtend.preprocessing import CopyTransformer

trans = CopyTransformer()

meta = {
    'id': 'raw1',
    'name': 'Raw Features',
    'description': (
        "Just copy raw features to comply with "
        "this preprocessing framewortk."),
    'keywords': ['CopyTransformer', 'mlxtend'],
    'feature_names_prefix': 'raw'
}