Пример #1
0
    def run(self):
        self.key = "mmbot"
        results = dict()
        ftype = File(self.file_path).get_type()

        if self.task["category"] == "file":
            if not HAVE_MMBOT:
                log.error(
                    "MaliciousMacroBot not installed, 'pip3 install mmbot', aborting mmbot analysis."
                )
                return results

            package = ""
            if "info" in self.results and "package" in self.results["info"]:
                package = self.results["info"]["package"]

            if (package not in ("doc", "ppt", "xls", "pub")
                    and ("Zip archive data, at least v2.0" not in ftype
                         or "Composite Document File V2 Document" not in ftype
                         or "Microsoft OOXML" not in ftype)):
                return results

            opts = dict()
            opts['benign_path'] = self.options.get(
                "benign_path",
                os.path.join(CUCKOO_ROOT, "data", "mmbot", "benign"))
            opts['malicious_path'] = self.options.get(
                "malicious_path",
                os.path.join(CUCKOO_ROOT, "data", "mmbot", "malicious"))
            opts['model_path'] = self.options.get(
                "model_path",
                os.path.join(CUCKOO_ROOT, "data", "mmbot", "model"))

            try:
                mmb = MaliciousMacroBot(opts["benign_path"],
                                        opts["malicious_path"],
                                        opts["model_path"],
                                        retain_sample_contents=False)

                mmb.mmb_init_model(modelRebuild=False)
                predresult = mmb.mmb_predict(self.file_path)
                results = mmb.mmb_prediction_to_json(predresult)[0]

                if "malicious" in results["prediction"]:
                    link_path = os.path.join(opts["malicious_path"],
                                             os.path.basename(self.file_path))
                    if not os.path.isfile(link_path):
                        os.symlink(self.file_path, link_path)
                elif "benign" in results["prediction"]:
                    link_path = os.path.join(opts["benign_path"],
                                             os.path.basename(self.file_path))
                    if not os.path.isfile(link_path):
                        os.symlink(self.file_path, link_path)

            except Exception as xcpt:
                log.error("Failed to run mmbot processing: %s", xcpt)

        return results
Пример #2
0
 def run(self, obj, config):
     mmb = MaliciousMacroBot()
     mmb.mmb_init_model()
     mmb.set_model_paths(benign_path=None, malicious_path=None, model_path=self.model)
     fc =(obj.filedata.read())
     result = mmb.mmb_predict(fc, datatype='filecontents')
     json = mmb.mmb_prediction_to_json(result)[0]
     for k,v in json.iteritems():
         if k == 'prediction':
             self._add_result("Prediction", v, {"name": k})
     for k,v in json.iteritems():
         if k != 'prediction': 
             self._add_result("Features", v, {"name": k})
Пример #3
0
 def run(self, obj, config):
     mmb = MaliciousMacroBot()
     mmb.mmb_init_model()
     mmb.set_model_paths(benign_path=None,
                         malicious_path=None,
                         model_path=self.model)
     f = tempfile.NamedTemporaryFile()
     f.write(obj.filedata.read())
     result = mmb.mmb_predict(f.name, datatype='filepath')
     f.close()
     json = mmb.mmb_prediction_to_json(result)[0]
     for k, v in json.iteritems():
         self._add_result("Prediction", k, {"value": v})
Пример #4
0
def test_mmb_predict_sample_on_disk():
    """
    Test ensures the mmb_predict function can make a prediction from a single sample on disk.
    """
    resetTest()
    mmb = MaliciousMacroBot(benign_path,
                            malicious_path,
                            model_path,
                            retain_sample_contents=False)
    result = mmb.mmb_init_model(modelRebuild=True)
    predresult = mmb.mmb_predict(origsample_path, datatype='filepath')
    predicted_label = predresult.iloc[0]['prediction']
    logging.info('predicted label: {}'.format(predicted_label))
    logging.info(mmb.mmb_prediction_to_json(predresult))
    logging.info('predicted label: {}'.format(predicted_label))

    assert (predicted_label == 'benign' or predicted_label == 'malicious')